【題目】已知數列{an}中,a1=1,{bn}滿足bn=2nan,b3=10,且{bn}是等差數列.
(1)求數列{an}的通項;
(2)求數列{an}的前n項和為Sn.
科目:高中數學 來源: 題型:
【題目】已知圓的方程為,點,點M為圓上的任意一點,線段的垂直平分線與線段相交于點N.
(1)求點N的軌跡C的方程.
(2)已知點,過點A且斜率為k的直線交軌跡C于兩點,以為鄰邊作平行四邊形,是否存在常數k,使得點B在軌跡C上,若存在,求k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比稱為“直線關于圓的距離比”.
(1)設圓求過點P的直線關于圓的距離比的直線方程;
(2)若圓與軸相切于點A且直線關于圓C的距離比求出圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的離心率為且經過點P(2,).
(1)求橢圓C的方程;
(2)若橢圓C的左右頂點分別為A,B,過點A斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.是否存在定點Q,對于任意的k(k≠0)都有BD⊥EQ,若存在,求△AQD的面積的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校實行選科走班制度,張毅同學的選擇是地理、生物、政治這三科,且生物在層班級.該校周一上午選科走班的課程安排如下表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習,則他不同的選課方法的種數為( )
第一節(jié) | 第二節(jié) | 第三節(jié) | 第四節(jié) |
地理1班 | 化學層3班 | 地理2班 | 化學層4班 |
生物層1班 | 化學層2班 | 生物層2班 | 歷史層1班 |
物理層1班 | 生物層3班 | 物理層2班 | 生物層4班 |
物理層2班 | 生物層1班 | 物理層1班 | 物理層4班 |
政治1班 | 物理A層3班 | 政治2班 | 政治3班 |
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】首項為O的無窮數列同時滿足下面兩個條件:
①;②
(1)請直接寫出的所有可能值;
(2)記,若對任意成立,求的通項公式;
(3)對于給定的正整數,求的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com