已知f(x)=x3-6x2+9xabc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結論,其中正確的是                                                                            (  )

f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

A.①③                            B.①④

C.②③                            D.②④

C

解析 ∵f(x)=x3-6x2+9xabc,∴f′(x)=3x2-12x+9=3(x-1)(x-3),令f′(x)=0,得x=1或x=3.依題意有,函數(shù)f(x)=x3-6x2+9xabc的圖像與x軸有三個不同的交點,故f(1)f(3)<0,即(1-6+9-abc)(33-6×32+9×3-abc)<0.

∴0<abc<4,∴f(0)=-abc<0,f(1)=4-abc>0,f(3)=-abc<0,故②③是對的,應選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3ax在[1,+∞)上是單調增函數(shù),則a的最大值是(  )

A.0                B.1

C.2                D.3

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆浙江省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:選擇題

已知f(x)=x3x,若ab,c∈R,且ab>0,ac>0,bc>0,則f(a)+f(b)+f(c)的值(   )

A.一定大于0        B.一定等于0        C.一定小于0        D.正負都有可能

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學必修1單調性與最大(。┲稻毩暰恚ǘń馕霭妫 題型:解答題

已知f(x)=x3+x(x∈R),

(1)判斷f(x)在(-∞,+∞)上的單調性,并證明;

(2)求證:滿足f(x)=a(a為常數(shù))的實數(shù)x至多只有一個.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆山東省高二下學期3月月考理科數(shù)學試卷(解析版) 題型:選擇題

已知f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則a的取值范圍為(   )

  A、-1<a<2    B、-3<a<6    C、a<-1或a>2    D、a<-3或a>6

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆浙江省杭州市高二第二學期3月月考理科數(shù)學試卷 題型:選擇題

已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,則f(a)+f(b)+f(c)的值(  )

A.一定大于0  B.一定等于0   C.一定小于0  D.正負都有可能

 

查看答案和解析>>

同步練習冊答案