【題目】已知n是正偶數(shù),用數(shù)學(xué)歸納法證明時(shí),若已假設(shè)n=k(k≥2且為偶數(shù))時(shí)命題為真,則還需證明_______.
【答案】n=k+2時(shí)命題成立
【解析】
由數(shù)學(xué)歸納法的證明步驟求解即可.
解:因?yàn)?/span>n是正偶數(shù),故只需證等式對(duì)所有偶數(shù)都成立,因k的下一個(gè)偶數(shù)是k+2,
即還需證明n=k+2時(shí)命題成立.
故答案為:n=k+2時(shí)命題成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校有舞蹈、管樂(lè)、話(huà)劇、合唱四個(gè)節(jié)目均參加了全國(guó)決賽,記者隨機(jī)采訪(fǎng)了四名參賽同學(xué)并獲得了以下信息:(1)四個(gè)節(jié)目只有兩個(gè)獲獎(jiǎng);(2)若舞蹈獲獎(jiǎng),則話(huà)劇肯定沒(méi)獲獎(jiǎng);(3)若管樂(lè)獲獎(jiǎng),則合唱一定獲獎(jiǎng);(4)若話(huà)劇沒(méi)獲獎(jiǎng),則合唱肯定沒(méi)獲獎(jiǎng)?chuàng)丝梢耘袛喃@獎(jiǎng)的兩個(gè)節(jié)目是( )
A.舞蹈、話(huà)劇B.管樂(lè)、話(huà)劇C.舞蹈、管樂(lè)D.話(huà)劇、合唱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(2﹣ax)(a>0,a≠1)在區(qū)間[0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)作直線(xiàn)交拋物線(xiàn)于A(yíng)(x1 , y1)B(x2 , y2)兩點(diǎn),如果x1+x2=6,那么|AB|=( )
A.6
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U={1,2,3,4,5},集合A={3,4},B={1,2},則(UA)∩B等于( )
A.{1,2}
B.[1,3}
C.{1,2,5}
D.{1,2,3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù)。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°- sin2(-18°)cos248°
(5)sin2(-25°)+cos255°- sin2(-25°)cos255°
Ⅰ 試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù)
Ⅱ 根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣位三角恒等式,并證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題p:x∈R,x2≥0的否定是( )
A.x∈R,x2≥0
B.x∈R,x2<0
C.x∈R,x2<0
D.x∈R,x2>0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com