精英家教網 > 高中數學 > 題目詳情

【題目】f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調區(qū)間;

)已知f(x)x=1處取得極大值.求實數a的取值范圍.

【答案】)當時,函數單調遞增區(qū)間為,當時,函數單調遞增區(qū)間為,單調遞減區(qū)間為; (

【解析】試題分析:()先求出,然后討論當時,當時的兩種情況即得.

)分以下情況討論:時,時,時,時,綜合即得.

試題解析:()由

可得,

,

時,

時, ,函數單調遞增;

時,

時, ,函數單調遞增,

時, ,函數單調遞減.

所以當時, 單調遞增區(qū)間為;

時,函數單調遞增區(qū)間為,單調遞減區(qū)間為.

)由()知, .

時, 單調遞減.

所以當時, , 單調遞減.

時, 單調遞增.

所以x=1處取得極小值,不合題意.

時, ,由()內單調遞增,

可得當當時, , 時, ,

所以(0,1)內單調遞減,在內單調遞增,

所以x=1處取得極小值,不合題意.

時,即時, (0,1)內單調遞增,在內單調遞減,

所以當時, , 單調遞減,不合題意.

時,即,當時, 單調遞增,

時, 單調遞減,

所以f(x)x=1處取得極大值,合題意.

綜上可知,實數a的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xax+(a1)。

1)討論函數的單調性;

2)證明:若,則對任意x,xxx,有。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過曲線的左焦點且和雙曲線實軸垂直的直線與雙曲線交于點A,B,若在雙曲線的虛軸所在的直線上存在—點C,使得,則雙曲線離心率e的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx=sin+cos,x∈R

1)求函數fx)的最小正周期,并求函數fx)在x∈[﹣2π2π]上的單調遞增區(qū)間;

2)函數fx=sinxx∈R)的圖象經過怎樣的平移和伸縮變換可以得到函數fx)的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知{an}是由非負整數組成的無窮數列,該數列前n項的最大值記為An , 第n項之后各項an+1 , an+2…的最小值記為Bn , dn=An﹣Bn
(1)若{an}為2,1,4,3,2,1,4,3…,是一個周期為4的數列(即對任意n∈N* , an+4=an),寫出d1 , d2 , d3 , d4的值;
(2)設d是非負整數,證明:dn=﹣d(n=1,2,3…)的充分必要條件為{an}是公差為d的等差數列;
(3)證明:若a1=2,dn=1(n=1,2,3,…),則{an}的項只能是1或者2,且有無窮多項為1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率為,且過點.為橢圓的右焦點, 為橢圓上關于原點對稱的兩點,連結并延長,分別交橢圓于兩點.

(1)求橢圓的標準方程;

(2)設直線的斜率分別為,是否存在實數,使得?若存在,求出實數的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位實行職工值夜班制度,已知名職工每星期一到星期五都要值一次夜班,且沒有兩人同時值夜班,星期六和星期日不值夜班,若昨天值夜班,從今天起至少連續(xù)天不值夜班,星期四值夜班,則今天是星期幾(

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設四面體的六條棱的長分別為1,1,1,1, 和a,且長為a的棱與長為 的棱異面,則a的取值范圍是(
A.(0,
B.(0,
C.(1,
D.(1,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在五面體ABCDEF中,點O是矩形ABCD的對角線的交點,面CDE是等邊三角形,棱。

(1)證明FO∥平面CDE;

(2)設BC=CD證明EO⊥平面CDE。

查看答案和解析>>

同步練習冊答案