如圖,已知離心率為
3
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線i交橢圓C于不同的兩點(diǎn)A、B.
(1)求橢圓C的方程;
(2)記直線MB、MA與x軸的交點(diǎn)分別為P、Q,若MP斜率為k1,MQ斜率為k2,求k1+k2
考點(diǎn):直線與圓錐曲線的綜合問題
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由給出的橢圓的離心率、橢圓過定點(diǎn)M(2,1)及隱含條件a2=b2+c2列方程組可求a2,b2,則橢圓方程可求;
(2)設(shè)出直線l的方程,設(shè)出A,B兩點(diǎn)的坐標(biāo),把直線和橢圓聯(lián)立后可求A,B兩點(diǎn)的橫坐標(biāo)的和與積,把直線MA,MB的斜率k1、k2分別用A,B兩點(diǎn)的坐標(biāo)表示,把縱坐標(biāo)轉(zhuǎn)化為橫坐標(biāo)后,則k1+k2僅含A,B兩點(diǎn)的橫坐標(biāo)的和與積,化簡(jiǎn)整理即可得到結(jié)論.
解答: 解:(1)設(shè)橢圓C的方程為:
x2
a2
+
y2
b2
=1

由題意得:
c
a
=
3
2
…①
a2=b2+c2…②
4
a2
+
1
b2
=1…③
,
把①代入②得:a2=4b2④.
聯(lián)立③④得:a2=8,b2=2.
∴橢圓方程為
x2
8
+
y2
2
=1

(2)∵M(jìn)(2,1),∴kOM=
1
2

又∵直線l∥OM,可設(shè)l:y=
1
2
x+m,將式子代入橢圓C得:x2+4(
1
2
x+m)2-8=0,
整理得:x2+2mx+2m2-4=0.
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-2m,x1x2=2m2-4.
設(shè)直線MA、MB的斜率分別為k1、k2,則k1=
y1-1
x1-2
,k2=
y2-1
x2-2

事實(shí)上,k1+k2=
1
2
x1+m-1
x1-2
+
1
2
x2+m-1
x2-2

=
1
2
(x1-2)+m
x1-2
+
1
2
(x2-2)+m
x2-2
=1+m(
1
x1-2
+
1
x2-2

=1+m•
x1+x2-4
x1
x
 
2
-2(x1+x2)+4

=1+m•
-2m-4
2m2-4-2(-2m)+4

=1-
2m2+4m
2m2+4m

=0.
k1+k2的值為0.
點(diǎn)評(píng):本題考查了橢圓標(biāo)準(zhǔn)方程的求法,考查了直線和圓錐曲線的位置關(guān)系,考查了數(shù)形結(jié)合的解題思想,解答此類問題的關(guān)鍵是,常常采用設(shè)而不求的方法,即設(shè)出直線與圓錐曲線交點(diǎn)的坐標(biāo),解答時(shí)不求坐標(biāo),而是運(yùn)用根與系數(shù)關(guān)系求出兩個(gè)點(diǎn)的橫坐標(biāo)的和與積,然后結(jié)合已知條件整體代入求解問題,此題是難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下命題:
①一個(gè)簡(jiǎn)諧運(yùn)動(dòng)的函數(shù)表達(dá)式為f(x)=sin(
1
2
x+
4
)
,則這個(gè)簡(jiǎn)諧運(yùn)動(dòng)的函數(shù)的最小正周期為4π;
②已知函數(shù)f(x)=loga(x-
87
2
)+89,(a>0且a≠1)
恒過定點(diǎn)(m,n),則m,n使等式m=sin21°+sin22°+sin23°+…+sin2n°成立;
③對(duì)于函數(shù)f(x)=x2+ax+b和g(x)=logax(0<a<1),有f(
x1+x2
2
)≤f(x1)+f(x2)
g(
x1+x2
2
)≥g(x1)+g(x2)
成立;
④定義:若任意x∈A,總有a-x∈A,(A≠∅),就稱集合A為a的閉集.已知集合A⊆{1,2,3,4,5,6},且A為6的閉集,則這樣的集合A共有7個(gè);
其中所有正確敘述的命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos
π
9
•cos
9
•cos(-
23π
9
)=( 。
A、-
1
8
B、-
1
16
C、
1
16
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在對(duì)某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲、乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測(cè)量該產(chǎn)品中某種元素的含量(單位:毫克).如圖是測(cè)量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量≥15毫克時(shí)為優(yōu)質(zhì)品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(Ⅱ)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線l:y=2x-4交拋物線y2=4x于A、B兩點(diǎn),試在拋物線AOB這段曲線上求一點(diǎn)P,使△ABP的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(4,4),圓C:(x-1)2+y2=5與橢圓E:
x2
18
+
y2
2
=1
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓左、右焦點(diǎn),直線PF1與圓C相切.設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
AP
AQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0,m∈R.
(Ⅰ)若方程C表示圓,求m的取值范圍;
(Ⅱ)若圓C與直線l:4x-3y+7=0相交于M,N兩點(diǎn),且|MN|=2
3
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn),A、B為兩個(gè)頂點(diǎn),已知橢圓C上的點(diǎn)(1,
3
2
)到F1、F2兩點(diǎn)的距離之和為4.
(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)過橢圓C的焦點(diǎn)F2作AB的平行線交橢圓于P、Q兩點(diǎn),求弦長(zhǎng)|PQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②a、b、c是空間中的三條直線,a∥b的充要條件是a⊥c且b⊥c;
③命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題;
④對(duì)任意實(shí)數(shù)x,有f(-x)=f(x),且當(dāng)x>0時(shí),f′(x)>0,則當(dāng)x<0時(shí),f′(x)<0.
其中的真命題是
 
.(寫出所有真命題的編號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案