10.已知函數(shù)f(x)=2x2+mx+4,它在(-∞,-2]上單調(diào)遞減,則f(1)的取值范圍是( 。
A.f(1)=14B.f(1)>14C.f(1)≤14D.f(1)≥14

分析 由已知得到對稱軸x=-$\frac{m}{4}$≥-2,解出m范圍,得到f(1)的范圍.

解答 解:由已知函數(shù)f(x)=2x2+mx+4,m∈R,它在(-∞,-2]上單調(diào)遞減,
則對稱軸x=-$\frac{m}{4}$≥-2,所以m≤8,
又f(1)=6+m,
所以f(1)-6≤8,
所以f(1)≤14,
故選C.

點評 本題考查的知識點是二次函數(shù)的性質(zhì),其中根據(jù)二次函數(shù)的圖象和性質(zhì),構(gòu)造一個關(guān)于m的不等式,是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出下面四個命題:
①三個不同的點確定一個平面;
②一條直線和一個點確定一個平面;
③空間兩兩相交的三條直線確定一個平面;
④兩條平行直線確定一個平面.
其中正確的命題是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某風(fēng)險投資公司選擇了三個投資項目,設(shè)每個項目成功的概率都為$\frac{1}{2}$,且相互之間設(shè)有影響,若每個項目成功都獲利20萬元,若每個項目失敗都虧損5萬元,該公司三個投資項目獲利的期望為( 。
A.30萬元B.22.5萬元C.10萬元D.7.5萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{1}{3}$x${\;}^{3}-\frac{1}{2}m{x}^{2}+4x-3$在區(qū)間[1,2]上是增函數(shù),則實數(shù)m的取值范圍為( 。
A.4≤m≤5B.2≤m≤4C.m≤2D.m≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的前n項和為Sn,且S3=-9,a4+a6=a5
(1)求{an}的通項公式;
(2)求數(shù)列{a${\;}_{n}+{2}^{{a}_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-b{x^2}$+2x-a,x=2是f(x)的一個極值點.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時,求方程f(x)=0的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的函數(shù)f(x)滿足f'(x)-f(x)=x•ex,且$f(0)=\frac{1}{2}$,則$\frac{{x•{e^x}}}{f(x)}$的最大值為( 。
A.1B.-$\frac{1}{2}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,E,F(xiàn),G分別是AB,BD,PC的中點,PE⊥底面ABCD.
(Ⅰ)求證:平面EFG∥平面PAD.
(Ⅱ)是否存在實數(shù)λ滿足PB=λAB,使得平面PBC⊥平面PAD?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊長,且a=1,b=$\sqrt{2}$,tanC=1,則△ABC外接圓面積為(  )
A.$\frac{1}{2}$πB.$\frac{1}{3}$πC.πD.$\sqrt{3}$π

查看答案和解析>>

同步練習(xí)冊答案