已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,右準(zhǔn)線方程為x=
3
3
,
(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在以雙曲線C的實(shí)軸長為直徑的圓上,求m的值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)根據(jù)雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,右準(zhǔn)線方程為x=
3
3
,列出方程組,求出a,c,可求a,即可求雙曲線C的方程;
(2)以雙曲線實(shí)軸長為直徑的圓方程為:x2+y2=1,把y=x+m代入雙曲線方程,利用韋達(dá)定理,求出AB的中點(diǎn),代入圓方程,即可求m的值.
解答: 解:(1)∵雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,右準(zhǔn)線方程為x=
3
3
,
c
a
=
3
a2
c
=
3
3
,
∴a=1,c=
3
,
∴b=
c2-a2

∴雙曲線C的方程為x2-
y2
2
=1---------(4分)
(2)以雙曲線實(shí)軸長為直徑的圓方程為:x2+y2=1,
把y=x+m代入雙曲線方程得:x2-2mx-m2-2=0,
令A(yù)(x1,y1),B(x2,y2),AB的中點(diǎn)M(x0,y0)  
則有:
△=4m2-4(-m2-2)>0
x1+x2=2m
x1x2=-m2-2
,
∴x0=
x1+x2
2
=m,y0=
y1+y2
2
=
x1+x2
2
+m=2m,
代入圓方程x2+y2=1中得:m2=
1
5
,
∴m=±
5
5
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≥3}∪{x|x<-1},則∁RA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的偶函數(shù),對(duì)任意x∈R都有f(x+6)=f(x)+f(3),x1,x2∈[0,3],x1≠x2時(shí),有
f(x1)-f(x2)
x1-x2
>0
成立,下列結(jié)論中錯(cuò)誤的是(  )
A、f(3)=0
B、直線x=-6是函數(shù)y=f(x)的圖象的一條對(duì)稱軸
C、函數(shù)y=f(x)在[-9,9]上有四個(gè)零點(diǎn)
D、函數(shù)y=f(x)在[-9,-6]上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+x-1.
(1)求f(2); 
(2)求f(
1
x
+1);
(3)若f(x)=5,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M、N,且線段MN的垂直平分線過定點(diǎn)G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,角α的頂點(diǎn)是坐標(biāo)原點(diǎn),始邊為x軸的正半軸,終邊與單位圓O交于點(diǎn)A(x1,y1),α∈(
π
4
π
2
).將角α終邊繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)
π
4
,交單位圓于點(diǎn)B(x2,y2).
(1)若x1=
3
5
,求x2;
(2)過A,B作x軸的垂線,垂足分別為C,D,記△AOC及△BOD的面積分別為S1,S2,且S1=
4
3
S2,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-ax+1,若存在t∈[1,3],使f(-t2-1)=f(2t),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,焦距為2,一條準(zhǔn)線方程為x=2.P為橢圓C上一點(diǎn),直線PF1交橢圓C于另一點(diǎn)Q.
(1)求橢圓C的方程;
(2)若點(diǎn)P的坐標(biāo)為(0,b),求過P,Q,F(xiàn)2三點(diǎn)的圓的方程;
(3)若
F1P
QF1
,且λ∈[
1
2
,2],求
OP
OQ
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=kx+1與雙曲線C:3x2-y2=1相交于不同的A,B兩點(diǎn).
(1)求AB的長度;
(2)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出k的值,若不存在,寫出理由.

查看答案和解析>>

同步練習(xí)冊答案