分析 (1)求出f(x)的導(dǎo)數(shù),以及單調(diào)區(qū)間,可得最小值;
(2)由題意可得f(x)-1的解析式,運(yùn)用零點(diǎn)存在定理可知f(x)-1=0在區(qū)間$(\frac{1}{e},1)$內(nèi)有實(shí)數(shù)解,從而在區(qū)間(0,1)內(nèi)有實(shí)數(shù)解;再由f(x)的導(dǎo)數(shù),即可判斷方程解的個(gè)數(shù);
(3)由(1)知:${(\frac{x}{3}-lnx)_{min}}=1-ln3$,可得x>0的不等式,取x0=6(M-1+ln3)>0,當(dāng)x>x0時(shí),即可得證.
解答 解:(1)函數(shù)f(x)=$\frac{x}{k}$-lnx(k>0)的導(dǎo)數(shù)為$f'(x)=\frac{1}{k}-\frac{1}{x}=\frac{x-k}{kx}$,
當(dāng)0<x<k時(shí),f'(x)<0,當(dāng)x>k時(shí),f'(x)>0,
所以f(x)在(0,k)單調(diào)遞減,在(k,+∞)單調(diào)遞增,
從而f(x)min=f(k)=1-lnk…(4分)
(2)k=2時(shí),$f(x)-1=\frac{x}{2}-lnx-1$,
因?yàn)?f(\frac{1}{e})-1=\frac{1}{2e}>0$,$f(1)-1=-\frac{1}{2}<0$,且f(x)的圖象是連續(xù)的,
所以f(x)-1=0在區(qū)間$(\frac{1}{e},1)$內(nèi)有實(shí)數(shù)解,從而在區(qū)間(0,1)內(nèi)有實(shí)數(shù)解;
又當(dāng)x∈(0,1)時(shí),$f'(x)=\frac{1}{2}-\frac{1}{x}<0$,所以f(x)在(0,1)上單調(diào)遞減,
從而f(x)-1=0在區(qū)間(0,1)內(nèi)至多有一個(gè)實(shí)數(shù)解,
故f(x)-1=0在區(qū)間(0,1)內(nèi)有唯一實(shí)數(shù)解.…(8分)
(3)證明:由(1)知:${(\frac{x}{3}-lnx)_{min}}=1-ln3$,
所以x>0時(shí),$\frac{x}{3}-1+ln3≥lnx$①
由$\frac{x}{2}-M>\frac{x}{3}-1+ln3$得:x>6(M-1+ln3)
所以x>6(M-1+ln3)>0時(shí),$\frac{x}{2}-M>\frac{x}{3}-1+ln3$②
由①②知:取x0=6(M-1+ln3)>0,則當(dāng)x>x0時(shí),
有$\frac{x}{2}-M>\frac{x}{3}-1+ln3≥lnx$即$\frac{x}{2}-M>lnx$成立.…(12分)
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查函數(shù)零點(diǎn)定理的運(yùn)用,以及不等式恒成立問(wèn)題的解法,注意運(yùn)用已知結(jié)論,考查化簡(jiǎn)整理的運(yùn)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+y-4=0 | B. | x-y+2=0 | C. | x+y+4=0 | D. | x-y-2=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 57 | B. | 59 | C. | 61 | D. | 63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
男 | 女 | |
愛好 | 40 | 20 |
不愛好 | 20 | 30 |
A. | 再犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)” | |
B. | 再犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)” | |
C. | 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)” | |
D. | 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com