已知函數(shù)f(x)=,數(shù)列{an}滿足:2an+1-2an+an+1an=0且an≠0.?dāng)?shù)列{bn}中,b1=f(0)且bn=f(an-1).
(1)求證:數(shù)列是等差數(shù)列;
(2)求數(shù)列{|bn|}的前n項(xiàng)和Tn
(1)見(jiàn)解析   (2)Tn
(1)證明:由2an+1-2an+an+1an=0得
所以數(shù)列是等差數(shù)列.
(2)解:因?yàn)閎1=f(0)=5,
所以=5,
7a1-2=5a1,所以a1=1,
=1+(n-1)×,所以an
bn=7-(n+1)=6-n.
當(dāng)n≤6時(shí),Tn(5+6-n)=;
當(dāng)n≥7時(shí),Tn=15+(1+n-6)

所以,Tn
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列{an}的首項(xiàng)a1為a,公差d=2,前n項(xiàng)和為Sn
(1) 若當(dāng)n=10時(shí),Sn取到最小值,求的取值范圍;
(2) 證明:n∈N*, Sn,Sn+1,Sn+2不構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,,且為正整數(shù))
(1)求數(shù)列的通項(xiàng)公式;
(2)對(duì)任意正整數(shù),是否存在,使得恒成立?若存在,求是實(shí)數(shù)的最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列滿足,且,則使數(shù)列前項(xiàng)和最小的等于____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2013·淄博模擬)如圖,一個(gè)類似楊輝三角的數(shù)陣,請(qǐng)寫(xiě)出第n(n≥2)行的第2個(gè)數(shù)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)Sn表示數(shù)列的前n項(xiàng)和.
(1)若為等差數(shù)列,  推導(dǎo)Sn的計(jì)算公式;
(2)若, 且對(duì)所有正整數(shù)n, 有. 判斷是否為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為正項(xiàng)等比數(shù)列,,,為等差數(shù)列的前
項(xiàng)和,,.
(1)求的通項(xiàng)公式;
(2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

觀察下列式子:,…,則第n個(gè)式子是(     )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為等差數(shù)列的前項(xiàng)和,,則=
A.B.
C.D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案