若x∈(2,+∞)時(shí),logax<(x-1)2恒成立,則a的范圍是
 
考點(diǎn):函數(shù)恒成立問題
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),分類討論,由此構(gòu)造關(guān)于a的不等式,解不等式即可得到答案.
解答: 解:∵函數(shù)y=(x-1)2在區(qū)間(2,+∞)上單調(diào)遞增,
∴當(dāng)x∈(2,+∞)時(shí),y=(x-1)2∈(1,+∞)
①0<a<1時(shí),恒成立;
②a>1時(shí),若不等式logax<(x-1)2恒成立,
則a>1且loga2<1
即a>2,
故答案為:(0,1)∪(2,+∞).
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)恒成立問題,考查對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),其中根據(jù)二次函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),結(jié)合已知條件構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx-
π
4
)+1(A>0,ω>0)的最大值為
2
+1,其圖象相鄰兩條對稱軸之間的距離為
π
2

(1)求函數(shù)f(x)的解析式;
(2)求使f(x)≥0成立的x的取值集合;
(3)若x∈(0,
π
2
),求函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的棱長為a,E,F(xiàn)是線段AD1,DB上的點(diǎn),且AE=BF.
(1)求證:EF∥平面CD1
(2)求異面直線BD與B1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
1+x
1-x

(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)在[0,
1
2
]上的單調(diào)性并求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的有
 
.(寫出所有正確命題的序號)
①存在銳角θ,使得sinθ+cosθ=
1
3
;
②y=cos(x-
π
4
)在區(qū)間[
3
,π]上是減函數(shù);
③函數(shù)f(x)=sin(2x+
π
3
)的圖象關(guān)于點(diǎn)(
π
4
,0)對稱;
④將函數(shù)f(x)=sin2x的圖象向左平移
π
4
個(gè)單位后對應(yīng)的函數(shù)是一個(gè)偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的各棱長都等于2,D在AC1上,F(xiàn)為BB1中點(diǎn),且FD⊥AC1,有下述結(jié)論
(1)AC1⊥BC;
(2)
AD
DC1
=1;
(3)二面角F-AC1-C的大小為90°;
(4)三棱錐D-ACF的體積為
3
3

正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式t2+t+1≥|x-1|+|x+2|的解集是空集,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=logax在x∈(1,+∞)上恒有y<0,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校高中三個(gè)年級的學(xué)生數(shù)分別為高一950人,高二1000人,高三1050人,現(xiàn)要調(diào)查該學(xué)校學(xué)生的視力情況,用分層抽樣方法,從中抽取容量為60的樣本,則從高一年級中應(yīng)抽取的人數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案