精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線y2=2x和圓x2+y2﹣x=0,傾斜角為 的直線l經過拋物線的焦點,若直線l與拋物線和圓的交點自上而下依次為A,B,C,D,則|AB|+|CD|=

【答案】3
【解析】解:由圓x2+y2﹣x=0,即(x﹣ 2+y2= 可知,圓心為F( ,0),

半徑為 ,拋物線y2=2x,得到拋物線焦點為F( ,0),如圖:

|AB|+|CD|=|AD|﹣|BC|

∵|BC|為已知圓的直徑,∴|BC|=1,則|AB|+|CD|=|AD|﹣1.

設A(x1,y1)、D(x2,y2),

∵|AD|=|AF|+|FD|,而A、D在拋物線上,

由已知可知,直線l方程為y=x﹣ ,

消去y,得4x2﹣12x+1=0,

∴x1+x2=3.∴|AD|=3+1=4,

因此,|AB|+|CD|=4﹣1=3.

所以答案是:3.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設x>0,集合 ,若M∩N={1},則M∪N=(
A.{0,1,2,4}
B.{0,1,2}
C.{1,4}
D.{0,1,4}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知角x始邊與x軸的非負半軸重合,與圓x2+y2=4相交于點A,終邊與圓x2+y2=4相交于點B,點B在x軸上的射影為C,△ABC的面積為S(x),函數y=S(x)的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知下列命題: ①x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2x , 則x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+ ,x0∈(0,+∞),f(x0)=1;
④在△ABC中,若A>B,則sin A>sin B.
其中真命題是 . (將所有真命題序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: 的上、下焦點分別為F1 , F2 , 上焦點F1到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=
(I)若P是橢圓C上任意一點,求| || |的取值范圍;
(II)設過橢圓C的上頂點A的直線l與橢圓交于點B(B不在y軸上),垂直于l的直線與l交于點M,與x軸交于點H,若 =0,且| |=| |,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在公差不為0的等差數列{an}中,a22=a3+a6 , 且a3為a1與a11的等比中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=(﹣1)n ,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn , a1=a,當n≥2時, =3n2an+S ,an≠0,n∈N*.
(1)求a的值;
(2)設數列{cn}的前n項和為Tn , 且cn=3n1+a5 , 求使不等式4Tn>S10成立的最小正整數n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數方程為 (t為參數,a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(Ⅰ)說明C1是哪一種曲線,并將C1的方程化為極坐標方程;
(Ⅱ)直線C3的極坐標方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).

(1)求甲、乙兩人成績的平均數和中位數;

(2)現要從甲、乙兩人中選派一人參加比賽,從統計學的角度,你認為派哪位學生參加比較合適?

查看答案和解析>>

同步練習冊答案