【題目】新一屆班委會的7名成員有、三人是上一屆的成員,現(xiàn)對7名成員進行如下分工.

(Ⅰ)若正、副班長兩職只能由、、三人選兩人擔任,則有多少種分工方案?

(Ⅱ)若、、三人不能再擔任上一屆各自的職務(wù),則有多少種分工方案?

【答案】(1)720(2)

【解析】試題分析:(1)先安排正、副班長,再安排其他位置,最后根據(jù)分布計算原理求;2)討論、、三人不能再擔任上一屆各自的職務(wù)情形:任意一人都不擔任原來三個職務(wù);一人擔任擔任原來三個職務(wù)某個職務(wù);兩人擔任擔任原來三個職務(wù)某兩個職務(wù);三人擔任擔任原來三個職務(wù);最后根據(jù)分類計算原理求.

試題解析:

(Ⅰ)先確定正、副班長,有種選法,其余全排列有種,

共有種分工方案.

(Ⅱ)方法一:設(shè)、、三人的原職務(wù)是、,當任意一人都不擔任職務(wù)時有種;當中一人擔任中的職務(wù)時,有種;當中兩人擔任中的職務(wù)時,有種;當中三人擔任中的職務(wù)時,有種;故共有種分工方案.

方法二:擔任職務(wù)總數(shù)為種,當擔任原職務(wù)時有種,同理各自擔任原職務(wù)時也各自有種,而當、、同時擔任原職務(wù)時各有種;當同時擔任原職務(wù)時有種,故共有種分工方案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線, .

(1)求證:對,直線與圓總有兩個不同的交點

(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線;

(3)是否存在實數(shù),使得原上有四點到直線的距離為?若存在,求出的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.

(1)求證:OC⊥PD;

(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】吉安一中舉行了一次環(huán)保知識競賽活動,解本了次競賽學(xué)生成績情況,從中抽取部分學(xué)生的分數(shù)(分取正整數(shù),滿分為樣(樣本容)進行統(tǒng)計. 按照 的分作出率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容量率分布直方圖中的值;

(2)在選取的樣本中,從競賽學(xué)生成績是分以上(含分)的同學(xué)中隨機抽取名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)表示所抽取的名同學(xué)中得分在的學(xué)生人數(shù),的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為且曲線的左焦點在直線

(1)若直線與曲線交于兩點,求的值;

(2)求曲線的內(nèi)接矩形的周長的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】軸正半軸上一點, 兩點關(guān)于軸對稱,過點任作直線交拋物線兩點.(Ⅰ)求證: ;

(Ⅱ)若點的坐標為,且,試求所有滿足條件的直線的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】吉安一中舉行了一次環(huán)保知識競賽活動,解本了次競賽學(xué)生成績情況,從中抽取部分學(xué)生的分數(shù)(分取正整數(shù),滿分為樣(樣本容 )進行統(tǒng)計按照 的分作出率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù))

(1)求樣本容量率分布直方圖中的值;

(2)在選取的樣本中,從競賽學(xué)生成績是分以上(含分)的同學(xué)中隨機抽取名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,求所抽取的名同學(xué)中得分在的學(xué)生人數(shù)恰有一人的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知ABa,BCb(a>b),在ABADCB,CD上,分別截取AEAHCFCGx(x>0),設(shè)四邊形EFGH的面積為y.

(1)寫出四邊形EFGH的面積yx之間的函數(shù)關(guān)系;

(2)求當x為何值時y取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年5月,我省南昌市遭受連日大暴雨天氣,某網(wǎng)站就“民眾是否支持加大修建城市地下排水設(shè)施的資金投入”進行投票,按照南昌暴雨前后兩個時間收集有效投票,暴雨后的投票收集了份,暴雨前的投票也收集了份,所得統(tǒng)計結(jié)果如下表:

已知工作人與從所有投票中任取一個,取到“不支持投入”的投票的概率為.

(1)求列表中數(shù)據(jù)的值;

(2)能夠有多大的把握認為南昌暴雨對民眾是否贊成加大對修建城市地下排水設(shè)施的投入有關(guān)系?

附:

查看答案和解析>>

同步練習冊答案