【題目】下列結論不正確的是________(填序號).

各個面都是三角形的幾何體是三棱錐;

以三角形的一條邊所在直線為旋轉軸,其余兩邊旋轉形成的曲面所圍成的幾何體叫圓錐;

棱錐的側棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;

圓錐的頂點與底面圓周上的任意一點的連線都是母線.

【答案】①②③

【解析】錯誤,如圖所示,由兩個結構相同的三棱錐疊放在一起構成的幾何體,各面都是三角形,但它不是棱錐.

錯誤,如圖,若△ABC不是直角三角形或是直角三角形,但旋轉軸不是直角邊所在直線,所得的幾何體不是圓錐.

錯誤,若六棱錐的所有棱長都相等,則底面多邊形是正六邊形,由幾何圖形知,若以正六邊形為底面,側棱長必然要大于底面邊長.

正確,符合圓錐曲線母線的定義,故錯誤的是①②③.

考點: 旋轉體的結構特征.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且為偶函數(shù),對于函數(shù)有下列幾種描述:

是周期函數(shù); 是它的一條對稱軸;

是它圖象的一個對稱中心; 時,它一定取最大值;

其中描述正確的是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知由實數(shù)組成的等比數(shù)列{an}的前項和為Sn , 且滿足8a4=a7 , S7=254.
(1)求數(shù)列{an}的通項公式;
(2)對n∈N* , bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:對于實數(shù)和兩定點,在某圖形上恰有個不同的點,使得,稱該圖形滿足“度契合”.若邊長為4的正方形中,,且該正方形滿足“4度契合”,則實數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列滿足, .

(1)求的通項公式;

(2)各項均為正數(shù)的等比數(shù)列中, ,求的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,滿足,數(shù)列項和為.

(1)若數(shù)列是首項為正數(shù),公比為的等比數(shù)列.

①求證:數(shù)列為等比數(shù)列;

②若對任意恒成立,求的值;

(2)已知為遞增數(shù)列,即.若對任意,數(shù)列中都存在一項使得,求證:數(shù)列為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資人打算投資甲、乙兩個項目,根據(jù)預測,乙項目可能的最大盈利率分別為100%50%,可能的最大虧損率分別為30%10%,投資人計劃投資金額不超過10萬元要求確?赡艿馁Y金虧損不超過1.8萬元問投資人對甲、乙兩個項目各投資多少萬元才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 左焦點左頂點,橢圓上一點滿足軸,且點軸下方, 連線與左準線交于點過點任意引一直線與橢圓交于,連結交于點若實數(shù)滿足: , .

(1)求的值;

(2)求證:點在一定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________

【答案】3

【解析】 由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為,高為

如圖所示, 平面,

所以底面積為,

幾何體的高為,所以其體積為

點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結合側視圖進行綜合考慮求解以三視圖為載體的空間幾何體的體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應體積公式求解

型】填空
束】
16

【題目】已知橢圓 的右焦點為 為直線上一點,線段于點,若,則__________

查看答案和解析>>

同步練習冊答案