精英家教網 > 高中數學 > 題目詳情

【題目】某投資人打算投資甲、乙兩個項目,根據預測,、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損率分別為30%10%,投資人計劃投資金額不超過10萬元要求確?赡艿馁Y金虧損不超過1.8萬元問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大

【答案】投資人用4萬元投資甲項目,6萬元投資乙項目,取得的盈利最大為7萬元

【解析】

本試題主要是考查了線性規(guī)劃的運用。

根據已知條件設投資人分別用x萬元、y萬元投資甲、乙兩個項目,由題意:

,并且得到目標函數

然后運用平移法得到最值。

解:設投資人分別用x萬元、y萬元投資甲、乙兩個項目,由題意:

,目標函數

上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域。

作直線,并作平行于直線的一組直線,與可行域相交,其中有一條直線經過可行域上的點M,且與直線的距離最大,其中M點是直線和直線的交點,解方程組,此時(萬元),,當時,取得最大值。

答:投資人用4萬元投資甲項目、6萬元投資乙項目,才能在確保虧損不超過1.8 萬元的前提下,使可能的盈利最大。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,已知多面體中,四邊形為矩形, , 平面平面, 、分別為的中點.

)求證:

)求證: 平面

)若過的平面交于點,交,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中是真命題的是( )

①“若x2+y20,則x,y不全為零的否命題 ②“正多邊形都相似的逆命題

③“若m>0,則x2+x-m=0有實根的逆否命題④“若x-是有理數,則x是

無理數的逆否命題

A、①②③④ B、①③④ C、②③④ D、①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列結論不正確的是________(填序號).

各個面都是三角形的幾何體是三棱錐;

以三角形的一條邊所在直線為旋轉軸,其余兩邊旋轉形成的曲面所圍成的幾何體叫圓錐;

棱錐的側棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;

圓錐的頂點與底面圓周上的任意一點的連線都是母線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結果為,則判斷框內應填入(

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】空氣質量按照空氣質量指數大小分為七檔(五級),相對應空氣質量的七個類別,指數越大,說明污染的情況越嚴重,對人體危害越大.

指數

級別

類別

戶外活動建議

優(yōu)

可正常活動

輕微污染

易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應減少體積消耗和戶外活動.

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運動耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應減少體力活動.

中度重污染

重污染

健康人運動耐受力降低,由明顯強烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應當留在室內,避免體力消耗,一般人群應盡量減少戶外活動.

現(xiàn)統(tǒng)計邵陽市市區(qū)2016年1月至11月連續(xù)60天的空氣質量指數,制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數;

(2)求這60天空氣質量指數的平均值;

(3)將頻率分布直方圖中的五組從左到右依次命名為第一組,第二組,…,第五組.從第一組和第五組中的所有天數中抽出兩天,記它們的空氣質量指數分別為 ,求事件的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過點作圓 的切線, 為坐標原點,切點為,且.

(1)求的值;

(2)設是圓上位于第一象限內的任意一點,過點作圓的切線,且軸于點,交y軸于點,設,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD

(2)求證:平面BDE平面PAC;

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當時,求函數在點處的切線方程;

(2)求函數的極值;

(3)若函數在區(qū)間上是增函數,試確定的取值范圍.

【答案】(1);(2)當時, 恒成立, 不存在極值.當時,

有極小值無極大值.(3)

【解析】試題分析:

(1)當時,求得,得到的值,即可求解切線方程.

(2)由定義域為,求得,分時分類討論得出函數的單調區(qū)間,即可求解函數的極值.

(3)根據題意上遞增,得恒成立,進而求解實數的取值范圍.

試題解析:

(1)當時, , ,

,又,∴切線方程為.

(2)定義域為, ,當時, 恒成立, 不存在極值.

時,令,得,當時, ;當時, ,

所以當時, 有極小值無極大值.

(3)∵上遞增,∴恒成立,即恒成立,∴

點睛:導數是研究函數的單調性、極值(最值)最有效的工具,而函數是高中數學中重要的知識點,所以在歷屆高考中,對導數的應用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來看,對導數的應用的考查主要從以下幾個角度進行: (1)考查導數的幾何意義,往往與解析幾何、微積分相聯(lián)系(2)利用導數求函數的單調區(qū)間,判斷單調性;已知單調性,求參數(3)考查數形結合思想的應用

型】解答
束】
22

【題目】已知圓 和點, 是圓上任意一點,線段的垂直平分線和相交于點, 的軌跡為曲線

(1)求曲線的方程;

(2)點是曲線軸正半軸的交點,直線兩點,直線, 的斜率分別是, ,若,求:①的值;②面積的最大值.

查看答案和解析>>

同步練習冊答案