7.已知函數(shù)f(x)=x2-2ax+3.
(1)若f(1)=2,求實數(shù)a的值;
(2)當x∈R時,f(x)≥0恒成立,求實數(shù)a的取值范圍.

分析 (1)由f(1)=12-2a+3=2,即可求得實數(shù)a的值;
(2)當x∈R時,f(x)=x2-2ax+3≥0恒成立,可知△≤0,于是可求得實數(shù)a的取值范圍.

解答 解:(1)若f(1)=2,即12-2a+3=2,解得:a=1;
(2)∵當x∈R時,f(x)=x2-2ax+3≥0恒成立,
∴△=4a2-12≤0,解得:-$\sqrt{3}$≤a≤$\sqrt{3}$,
∴求實數(shù)a的取值范圍為[-$\sqrt{3}$,$\sqrt{3}$].

點評 本題考查函數(shù)恒成立問題,突出考查二次函數(shù)的性質(zhì)與應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.4個男同學,3個女同學站成一排.
(1)3個女同學必須相鄰,有多少種不同的排法?
(2)任何兩個女同學彼此不相鄰,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.40B.48C.56D.92

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知直線l:y=x+m,圓O:x2+y2-4=0,圓C:x2+y2+2ax-2ay+2a2-4a=0(0<a≤4).
(1)若a=3,圓O與圓C交于M,N兩點,試求線段|MN|的長.
(2)直線 l與圓C相切,且直線l在圓C心的下方,當0<a≤4時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知圓x2+y2-2x-4y+3=0關于直線ax+by-1=0(a>0,b>0)對稱,則$\frac{1}{a}$+$\frac{2}$的最小值為,9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.棱長為2的正方體的所有頂點都在球O的球面上,則球O的體積為4$\sqrt{3}$π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.求曲線y=x3-x+1過點(1,1)的切線方程為2x-y-1=0或x+4y-5=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x),對任意x∈R,都有f(x+2)=f(x)+f(1)成立,若函數(shù)y=f(x-1)的圖象關于直線x=1對稱,則f(2015)=( 。
A.-2B.0C.2D.2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若點(1,-3)在圓(x-2)2+(y+1)2=m的內(nèi)部,則實數(shù)m的取值范圍是( 。
A.0<m<10B.0<m<5C.m>5D.m<5

查看答案和解析>>

同步練習冊答案