20.若k為整數(shù),則cos(kπ+$\frac{π}{3}$)的值為(  )
A.±$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

分析 通過k取奇數(shù)與偶數(shù),分別求出表達(dá)式的值即可.

解答 解:若k為偶數(shù),則cos(kπ+$\frac{π}{3}$)=cos$\frac{π}{3}$=$\frac{1}{2}$,
若k為奇數(shù),則cos(kπ+$\frac{π}{3}$)=cos$\frac{4π}{3}$=$-\frac{1}{2}$.
cos(kπ+$\frac{π}{3}$)的值為$±\frac{1}{2}$.
故選:A.

點(diǎn)評 本題考查三角函數(shù)化簡求值,分類討論的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求兩條平行直線5x+2y-5=0和10x+4y+35=0之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平面直角坐標(biāo)系xOy中,點(diǎn)A與點(diǎn)B關(guān)于y軸對稱,若向量$\overrightarrow{α}$=(1,k),則滿足不等式$\overrightarrow{OA}$2+α•$\overrightarrow{AB}$≤0的點(diǎn)A(x,y)的集合為( 。
A.{(x,y)|(x+1)2+y2≤1}B.{(x,y)|x2+y2≤k2}C.{(x,y)|(x-1)2+y2≤1}D.{(x,y)|(x+1)2+y2≤k2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合p={x|x=$\frac{2m}{|m|}$+$\frac{2|n|}{n}$,m,n為非零常數(shù)},則下列不正確的是( 。
A.-4∈PB.-2∈PC.0∈PD.4∈P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若α是第四象角,且3sin2α-sin($\frac{π}{2}$-α)-1=0,則tanα=-$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,隨x的增大,增長速度最快的是( 。
A.y=2xB.y=10000xC.y=log3xD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)y=f(x)是以$\frac{π}{2}$為周期的奇函數(shù),f($\frac{π}{3}$)=1,則f(-$\frac{5π}{6}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=${log}_{\frac{3}{2}}$(x2-3x-4)的單調(diào)增區(qū)間為(  )
A.(-∞,-1)B.(4,+∞)C.(-∞,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知p:存在x∈R,mx2+1≤0,q:任意x∈R,x2+mx+1>0,若p且q為真命題,則實(shí)數(shù)m的取值范
圍是(  )
A.m<2B.-2<m<2C.0<m<2D.-2<m<0

查看答案和解析>>

同步練習(xí)冊答案