如圖,把橢圓的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=( )

A.40
B.30
C.32
D.35
【答案】分析:根據(jù)題意要求的是焦半徑的和因此可利用橢圓的第二定義可得焦半徑的通式|PF|=5-,所以所求的焦半徑的和即可轉(zhuǎn)化為各點橫坐標(biāo)的和,故需根據(jù)對稱性分析出p4點為橢圓與Y軸正半軸的交點且P1,P2,P3與P5,P6,P7分別關(guān)于Y軸對稱然后代入化簡即可.
解答:解:不妨設(shè)P點是橢圓上的任意點則由橢圓的第二定義可得:又a=5,b=4,c==3故|PF|=5-  ①
∵把橢圓的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點
∴p4點為橢圓與Y軸正半軸的交點且P1,P2,P3與P5,P6,P7分別關(guān)于Y軸對稱
∴不妨設(shè)p1(x1,y1),p2(x2,y2),p3(x3,y3)且x1<0,x2<0,x3<0,p4(0,4)
∴p5(-x3,y3),p6(-x2,y2),p7(-x1,y1
∴由①可得|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=(5-
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=5×7=35
故答案選D
點評:本題主要考查了利用橢圓的第二定義求橢圓的焦半徑的和.解題的關(guān)鍵是要利用橢圓的第二定義可得焦半徑的通式|PF|=5-再根據(jù)對稱性得出p4點為橢圓與Y軸正半軸的交點且P1,P2,P3與P5,P6,P7分別關(guān)于Y軸對稱同時橢圓的準(zhǔn)線方程形式:x=或y=也要熟記!
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆遼寧省分校高二12月月考理科數(shù)學(xué)試題(解析版) 題型:選擇題

如圖,把橢圓的長軸分成等份,過每個分點作軸的垂線交橢圓的上半部分于七個點,是橢圓的一個焦點,則(     )

A. 28      B. 30       C. 35        D.25

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆甘肅省高二第一學(xué)期期末考試數(shù)學(xué)試卷 題型:選擇題

如圖,把橢圓的長軸分成等份,過每個分點作軸的垂線交橢圓的上半部分于七個點,是橢圓的一個焦點,則(    ).

 

 

A.50    B.35    C.32   D. 41

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市金鄉(xiāng)一中高二(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如圖,把橢圓的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=( )

A.40
B.30
C.32
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省漳州市立人學(xué)校高二(下)月考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,把橢圓的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=( )

A.40
B.30
C.32
D.35

查看答案和解析>>

同步練習(xí)冊答案