設是拋物線上相異兩點,到y(tǒng)軸的距離的積為且.
(1)求該拋物線的標準方程.
(2)過Q的直線與拋物線的另一交點為R,與軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.
(1).(2)直線PQ垂直于x軸時|PR|取最小值.
【解析】
試題分析:(1)確定拋物線的標準方程,關鍵是確定的值.利用,可得,
再根據(jù)P、Q在拋物線上,得到,集合已知條件,得4p2=4,p=1.
(2)設直線PQ過點,且方程為,應用聯(lián)立方程組
消去x得y2 2my 2a=0,利用韋達定理,建立的方程組,確定得到,利用“弦長公式”求解.
試題解析: (1)∵ ·=0,則x1x2+y1y2=0, 1分
又P、Q在拋物線上,故y12=2px1,y22=2px2,故得
+y1y2=0, y1y2= 4p2
3分
又|x1x2|=4,故得4p2=4,p=1.
所以拋物線的方程為: 5分
(2)設直線PQ過點E(a,0)且方程為x=my+a
聯(lián)立方程組
消去x得y2 2my 2a=0
∴ ① 7分
設直線PR與x軸交于點M(b,0),則可設直線PR方程為x=ny+b,并設R(x3,y3),
同理可知 ② 9分
由①、②可得
由題意,Q為線段RT的中點,∴ y3=2y2,∴b=2a
又由(Ⅰ)知, y1y2= 4,代入①,可得
2a= 4 ∴ a=2.故b=4. 11分
∴
∴.
當n=0,即直線PQ垂直于x軸時|PR|取最小值 14分
考點:拋物線標準方程,直線與拋物線的位置關系.
科目:高中數(shù)學 來源: 題型:
OP |
OQ |
TR |
TQ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
OP |
OQ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2007年廣東省汕頭市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com