已知m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,有下列命題:
①若m?α,n∥α,則m∥n;
②若m∥α,m∥β,則α∥β;
③若m⊥α,m⊥n,則n∥α;
④若m⊥α,m⊥β,則α∥β;
其中,真命題的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
考點(diǎn):命題的真假判斷與應(yīng)用
專題:空間位置關(guān)系與距離
分析:利用空間線線平行、線面平行、面面平行的性質(zhì)與判定定理對①②③④四個(gè)選項(xiàng)逐一判斷即可.
解答: 解:①若m?α,n∥α,則m∥n或m與n異面,故①錯(cuò)誤;
②若m∥α,m∥β,則α∥β或α與β相交,故②錯(cuò)誤;
③若m⊥α,m⊥n,則n∥α或n?α,故③錯(cuò)誤;
④若m⊥α,m⊥β,由線面垂直的性質(zhì)可知,α∥β,即④正確;
綜上所述,真命題的個(gè)數(shù)是1個(gè).
故選:A.
點(diǎn)評:本題考查命題的真假判斷與應(yīng)用,著重考查空間線線平行、線面平行、面面平行的性質(zhì)與判定,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點(diǎn),且一個(gè)焦點(diǎn)為F(3,0),直線y=x-1與其相交于M、N兩點(diǎn),MN中點(diǎn)的橫坐標(biāo)為-1,則雙曲線的方程為(  )
A、
x2
5
-
y2
4
=1
B、
x2
4
-
y2
5
=1
C、
x2
6
-
y2
3
=1
D、
x2
3
-
y2
6
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若S={1,2,3,4,5},M={1,3,4},N={2,4,5},則(∁SM)∩(∁SN)等于( 。
A、{1,3}B、∅
C、{4}D、{2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=3+4i,z2=t+i,且z1
.
z2
是實(shí)數(shù),則t=( 。
A、
4
3
B、
3
4
C、-
3
4
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|(x+1)(x-5)>0},B={x|a<x<a+8},若A∪B=R,則實(shí)數(shù)a的取值范圍是( 。
A、-3<a<-1
B、-3≤a≤-1
C、a≤-3或a≥-1
D、a<-3或a>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinax(a>0)的最小正周期為π,為了得到g(x)=sin(ax+
π
3
)的圖象,只要將y=f(x)的圖象( 。
A、向左平移
π
3
個(gè)單位長度
B、向左平移
π
6
個(gè)單位長度
C、向右平移
π
3
個(gè)單位長度
D、向右平移
π
6
個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)在區(qū)間[
1
2
,2]上的最值;
(2)不等式2f(x)+x2-ax+3≥0恒成立,求實(shí)數(shù)a的取值范圍;
(3)已知函數(shù)h(x)=
f(x)
x(x+1)
在區(qū)間[t,+∞)(t∈N*)上存在極值,求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班同學(xué)進(jìn)行了一次數(shù)學(xué)測試,將所得的數(shù)據(jù)整理后,畫出頻率分布直方圖,已知圖中從左到右的前三個(gè)小組的頻率分別是0.1,0.3,0.4,且第一小組的頻數(shù)是5.
(Ⅰ)求第四小組的頻率和本班學(xué)生人數(shù);
(Ⅱ)在這次測試中,全班成績的中位數(shù)會落在第幾小組內(nèi)?
(Ⅲ)若本次測試成績達(dá)到100分為優(yōu)秀,試估計(jì)本班優(yōu)秀率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,AC,BD交于點(diǎn)O,A1O⊥平面ABCD,A1A=BD=2,AC=2
2

(1)證明:A1C⊥平面BB1D1D;
(2)求平面BC1D1與平面BB1D1D夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案