已知P為△ABC所在平面外一點,且PA、PB、PC兩兩垂直,則下列命題:①PA⊥BC;②PB⊥AC;③PC⊥AB;④ AB⊥BC. 其中正確的


  1. A.
    ①②③
  2. B.
    ①②④
  3. C.
    ②③④
  4. D.
    ①②③④
A
試題分析:由PA、PB、PC兩兩垂直 可得PA⊥平面PBC ; PB⊥平面PAC ; PC⊥平面PAB 所以PA⊥BC;PB⊥AC;PC⊥AB  ①②③正確
△ABC中    
由余弦定理可知△ABC為銳角三角形
考點:本題考查線面垂直的判定和性質(zhì)定理
點評:基本定理的考查,學(xué)生易得分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P為△ABC所在平面α外一點,側(cè)面PAB、PAC、PBC與底面ABC所成的二面角都相等,則P點在平面α內(nèi)的射影一定是△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為△ABC所在平面內(nèi)一點,且滿足
AP
=
1
5
AC
+
2
5
AB
,則△APB的面積與△PAC的面積之比為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為△ABC所在平面外的一點,PC⊥AB,PC=AB=2,E、F分別為PA和BC的中點
(1)求EF與PC所成的角;
(2)求線段EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東實驗中學(xué)高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知P為△ABC所在平面外一點,且PA、PB、PC兩兩垂直,則下列命題:①PA⊥BC;②PB⊥AC;③PC⊥AB;④ AB⊥BC. 其中正確的(    )

                            A.①②③       B.①②④

C.②③④                   D.①②③④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省高二12月月考理科數(shù)學(xué) 題型:選擇題

已知P為△ABC所在平面α外一點,側(cè)面PAB、PAC、PBC與底面ABC所成的二面角都相等,則P點在平面α內(nèi)的射影一定是△ABC的(     )

A.內(nèi)心           B.外心           C.垂心         D.重心

 

查看答案和解析>>

同步練習(xí)冊答案