已知變量x、y滿足數(shù)學(xué)公式,則x2+y2的取值范圍為


  1. A.
    [13,40]
  2. B.
    (-∞,13]∪[40,+∞)
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:本題考查的是線性規(guī)劃問題,同時聯(lián)系到了兩點間的距離公式的幾何意義.在解答時,可先畫出可行域再根據(jù)可行域的位置看可行域當(dāng)中的點什么時候與原點的距離最遠(yuǎn)什么時候與原點的距離最近,最后注意此題求解的是距離的平方的范圍,進而得到最終答案.
解答:解:由題意可知,線性約束條件對應(yīng)的可行域如下,
由圖可知原點到P(2,6)的距離最遠(yuǎn)為 ,
原點到Q(2,3)的距離最近為 ,
又∵x2+y2代表的是原點到(x,y)點距離的平方,
故x2+y2的范圍是[13,40].
故選A
點評:本小題命題意圖是考查不等式的線性規(guī)劃,考查了轉(zhuǎn)化與化歸能力;本題考查的是線性規(guī)劃問題.在解答此類問題時,首先根據(jù)線性約束條件畫出可行域,再根據(jù)可行域分析問題.同時在本題中的目標(biāo)函數(shù)充分與幾何意義聯(lián)合考查,規(guī)律強易出錯值得同學(xué)們反思總結(jié).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
2x-y≤0
x-3y+5≥0
x≥0
,則z=x-y+5的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
2x-y≤0
x-2y+3≥0
x≥0
,則目標(biāo)函數(shù)z=x+y的最大值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
x-4y+3≤0
3x+5y≤25
x≥1
,設(shè)目標(biāo)函數(shù)z=2x+y,若存在不同的三點(x,y)使目標(biāo)函數(shù)z的值構(gòu)成等比數(shù)列,則以下不可能成為公比的數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x、y滿足條件
x≥1
x-y≤0
x+2y-9≤0
則z=x+y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+y≤1
2x+y≤2
x≥0,y≥0
,則目標(biāo)函數(shù)z=
1
2
x+y
的最大值為
1
1

查看答案和解析>>

同步練習(xí)冊答案