函數(shù)y=2sin2
π
4
-x)-1是( 。
A、最小正周期為π的奇函數(shù)
B、最小正周期為π的偶函數(shù)
C、最小正周期為
π
2
的奇函數(shù)
D、最小正周期為
π
2
的偶函數(shù)
考點:二倍角的余弦,三角函數(shù)的周期性及其求法,余弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:函數(shù)解析式可化簡為:y=sin2x,由T=
2
,f(-x)=sin(-2x)=-sin2x=-f(x),可知函數(shù)是最小正周期為π的奇函數(shù).
解答: 解:∵y=2sin2
π
4
-x)-1=1-cos[2(
π
4
-x)]-1=cos(
π
2
-2x)=sin2x.
∴T=
2
,f(-x)=sin(-2x)=-sin2x=-f(x),函數(shù)是最小正周期為π的奇函數(shù).
故選:A.
點評:本題主要考查了二倍角的余弦公式的應(yīng)用,考查了三角函數(shù)的周期性及其求法,考查了正弦函數(shù)的性質(zhì),屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點A(-2,-1),直線l的一個方向向量為(1,1),拋物線T的方程為y=ax2
(1)求直線l的方程
(2)若直線l與拋物線T交于點B、C兩點,且|BC|是|AB|和|AC|的等比中項,求拋物線T的方程
(3)設(shè)拋物線T的焦點為F,問:是否存在正整數(shù)a,使得拋物線T上至少有一點P.滿足|PF|=|PA|?若存在,試求出所有這樣的正整數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2cos(ωx+
π
3
)的最小正周期為T,且T∈(1,3),則正整數(shù)ω的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為實數(shù)集R,“f(x)是奇函數(shù)”是“|f(x)|是偶函數(shù)”的( 。
A、充分非必要條件
B、必要非充分條件
C、非充分非必要條件
D、充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為正實數(shù),則( 。
A、10lgx-lgy=10lgx-10lgy
B、10lg(x-y)=
10lgx
10lgy
C、10 
lgx
lgy
=10lgx-10lgy
D、10 lg
x
y
=
10lgx
10lgy

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x-10≤0}B={x|m+1≤x≤2m-1}.
(Ⅰ)當(dāng)m=3時,求集合A∩B,A∪B;
(Ⅱ)若滿足A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}中,a1=1,an+1=
2
3
an+1,則通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,2Sn-nan=n(n∈N*),若S20=-360,則a2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an2
a
,a>0且a≠1,求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案