4.若關(guān)于x的不等式|x-a|+|x-1|≥a恒成立,則實(shí)數(shù)a的取值范圍是$(-∞,\frac{1}{2}]$.

分析 根據(jù)絕對(duì)值的意義|x-a|+|x-1|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到2和a對(duì)應(yīng)點(diǎn)的距離之和,它的最小值等于|a-1|,可得答案.

解答 解:|x-a|+|x-1|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到1和a對(duì)應(yīng)點(diǎn)的距離之和,它的最小值等于|a-1|,
由不等式|x-a|+|x-1|≥a恒成立知,a≤|a-1|,
a≤0恒成立,a>0,兩邊平方可得0<a≤$\frac{1}{2}$,
∴a∈$(-∞,\frac{1}{2}]$.
故答案為:$(-∞,\frac{1}{2}]$.

點(diǎn)評(píng) 本題考查絕對(duì)值的意義,絕對(duì)值不等式的解法,求出|x-a|+|x-1|的最小值,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=CD,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(Ⅰ)求證:PA∥平面EDB;
(Ⅱ)求證:PB⊥平面EFD;
(Ⅲ)求二面角P-BC-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知點(diǎn)F(0,1),直線l1:y=-1,直線l1⊥l2于P,連結(jié)PF,作線段PF的垂直平分線交直線l2于點(diǎn)H.設(shè)點(diǎn)H的軌跡為曲線r.
(Ⅰ)求曲線r的方程;
(Ⅱ)過(guò)點(diǎn)P作曲線r的兩條切線,切點(diǎn)分別為C,D,
(。┣笞C:直線CD過(guò)定點(diǎn);
(ⅱ)若P(1,-1),過(guò)點(diǎn)O作動(dòng)直線L交曲線R于點(diǎn)A,B,直線CD交L于點(diǎn)Q,試探究$\frac{|PQ|}{|PA|}$+$\frac{|PQ|}{|PB|}$是否為定值?若是,求出該定值;不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)命題p:x2-3x+2<0,q:$\frac{x-1}{x-2}$≤0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知向量$\overrightarrow m$=$({cosx,cos({x+\frac{π}{6}})}),\overrightarrow n$=$({\sqrt{3}sinx$+cosx,2sinx}),且滿足f(x)=$\overrightarrow m•\overrightarrow n$.
(Ⅰ)求函數(shù)f(x)的對(duì)稱軸方程;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位得到g(x)的圖象,當(dāng)x∈[0,π]時(shí),求函數(shù)g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E.若AE=8,AB=10,則CE的長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|+2(x>0)}\\{3-{x}^{2}(x≤0)}\end{array}\right.$,方程f[f(x)]=a只有四個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A.(2+ln2,e)B.(e,2+ln3)C.(2+ln2,3)D.(3,2+ln3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.變量 x,y 滿足約束條件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,則z=2x-y的最大值為( 。
A.-1B.1C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且經(jīng)過(guò)點(diǎn)(1,$\frac{\sqrt{2}}{2}$),
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)Q(2,0),過(guò)點(diǎn)(-1,0)的直線l交C于M,N兩點(diǎn),△QMN的面積記為S,若對(duì)滿足條件的任意直線l,不等式S≤λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案