【題目】某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進(jìn)行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進(jìn)行檢驗.
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
溫度(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 26 | 32 | 26 | 16 |
(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?
(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)
【答案】(1);(2);(3)線性回歸方程是可靠的.
【解析】
(1)用列舉法求出基本事件數(shù),計算所求的概率值;
(2)由已知數(shù)據(jù)求得與,則線性回歸方程可求;
(3)利用回歸方程計算與8時的值,再由已知數(shù)據(jù)作差取絕對值,與1比較大小得結(jié)論.
解:(1)設(shè)“余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)為事件”,
從5組數(shù)據(jù)中選取3組數(shù)據(jù),余下的2組數(shù)據(jù)共10種情況:
,,,,,,,,,.
其中事件的有6種,
;
(2)由數(shù)據(jù)求得,,
且,.
代入公式得:,
.
線性回歸方程為:;
(3)當(dāng)時,,,
當(dāng)時,,.
故得到的線性回歸方程是可靠的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自由購是通過自助結(jié)算方式購物的一種形式. 某大型超市為調(diào)查顧客使用自由購的情況,隨機(jī)抽取了100人,統(tǒng)計結(jié)果整理如下:
20以下 | 70以上 | ||||||
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現(xiàn)隨機(jī)抽取 1 名顧客,試估計該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機(jī)抽取3人進(jìn)一步了解情況,用表示這3人中年齡在的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望;
(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環(huán)保購物袋.若某日該超市預(yù)計有5000人購物,試估計該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個環(huán)保購物袋.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,底面為正三角形,側(cè)棱垂直于底面,.若是棱上的點,且,則異面直線與所成角的余弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),當(dāng)時,曲線上對應(yīng)的點為.以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(II)設(shè)曲線與的公共點為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求常數(shù)k的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值;
(3)設(shè),且, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓E:()過點,其心率等于.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若A,B分別是橢圓E的左,右頂點,動點M滿足,且橢圓E于點P.
①求證:為定值:
②設(shè)與以為直徑的圓的另一交點為Q,求證:直線經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程是 (是參數(shù), ),直線的參數(shù)方程是 (是參數(shù)),曲線與直線有一個公共點在軸上,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系
(1)求曲線的極坐標(biāo)方程;
(2)若點,,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉辦數(shù)學(xué)知識競賽活動,共5000名學(xué)生參加,競賽分為初試和復(fù)試,復(fù)試環(huán)節(jié)共3道題,其中2道單選題,1道多選題,得分規(guī)則如下:參賽學(xué)生每答對一道單選題得2分,答錯得O分,答對多選題得3分,答錯得0分,答完3道題后的得分之和為參賽學(xué)生的復(fù)試成績.
(1)通過分析可以認(rèn)為學(xué)生初試成績服從正態(tài)分布,其中,,試估計初試成績不低于90分的人數(shù);
(2)已知小強(qiáng)已通過初試,他在復(fù)試中單選題的正答率為,多選題的正答率為,且每道題回答正確與否互不影響.記小強(qiáng)復(fù)試成績?yōu)?/span>,求的分布列及數(shù)學(xué)期望.
附:,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com