【題目】定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是

【答案】(0,
【解析】解:∵f(x+2)=f(x)﹣f(1),
且f(x)是定義域為R的偶函數(shù),
令x=﹣1可得f(﹣1+2)=f(﹣1)﹣f(1),
又f(﹣1)=f(1),
∴f(1)=0 則有f(x+2)=f(x),
∴f(x)是最小正周期為2的偶函數(shù).
當x∈[2,3]時,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2
函數(shù)的圖象為開口向下、頂點為(3,0)的拋物線.
∵函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,
令g(x)=loga(|x|+1),則f(x)的圖象和g(x)的圖象至少有3個交點.
∵f(x)≤0,∴g(x)≤0,可得0<a<1,
要使函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,
則有g(shù)(2)>f(2),可得 loga(2+1)>f(2)=﹣2,
即loga3>﹣2,∴3< ,解得- <a< ,又0<a<1,∴0<a<
故答案為:(0, ).

令x=﹣1,求出f(1),可得函數(shù)f(x)的周期為2,當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,畫出圖形,根據(jù)函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,利用數(shù)形結(jié)合的方法進行求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生在開學(xué)季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤元;未售出的產(chǎn)品,每盒虧損.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示。該同學(xué)為這個開學(xué)季購進了盒該產(chǎn)品,以(單位:盒,)表示這個開學(xué)季內(nèi)的市場需求量,(單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤。

(1)求市場需求量在[100,120]的概率;

(2)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的中位數(shù);

(3)將表示為的函數(shù),并根據(jù)直方圖估計利潤不少于元的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,過點B作⊙O的切線BC,OC交⊙O于點E,AE的延長線交BC于點D.

(1)求證:CE2=CDCB.
(2)若AB=2,BC= ,求CE與CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)fx)=(|x﹣2|+1)4,給出如下三個命題:①fx+2)是偶函數(shù);②fx)在區(qū)間(﹣∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);③fx)沒有最小值.其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分別是A1B1、A1C1的中點,BC=AC=CC1 , 則CN與AM所成角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義域為的奇函數(shù).

(1)求的值.

(2)若,試求不等式的解集;

(3)若上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項和為等比數(shù)列的前項和為,,.

(1),求的通項公式;

(2).

【答案】(1);(2)21或.

【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫出通項公式;(2)由,求出的值,再求出的值,求出

試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為,即.

(1)∵,結(jié)合,

.

(2)∵,解得或3,

時,,此時;

時,,此時.

型】解答
結(jié)束】
20

【題目】如圖,已知直線與拋物線相交于兩點, 且點的坐標為.

1的值;

2為拋物線的焦點, 為拋物線上任一點,的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

同步練習(xí)冊答案