分析 由題意畫出圖形,取CD中點G,把四面體體積轉化為兩個三棱錐D-ABG、C-ABG的體積求解;由題目所給四面體的對稱性及其外接球的對稱性可知取AB中點Q,連接GQ,由對稱性可知,四面體ABCD外接球的球心O在GQ上,由于勾股定理,計算即可得到半徑R.
解答 解:如圖,取CD中點G,∵△ACD、△BCD都是邊長為$\sqrt{3}$的正三角形,
∴AG=BG=$\frac{3}{2}$,
在等腰三角形AGB中,又AB=$\sqrt{5}$,∴G到AB的距離為$\sqrt{(\frac{3}{2})^{2}-(\frac{\sqrt{5}}{2})^{2}}=1$,
則${S}_{△AGB}=\frac{1}{2}×\sqrt{5}×1=\frac{\sqrt{5}}{2}$,
∴${V}_{ABCD}=\frac{1}{3}×\frac{\sqrt{5}}{2}×\sqrt{3}=\frac{\sqrt{15}}{6}$;
取AB中點Q,連接GQ,
由對稱性可知,四面體ABCD外接球的球心O在GQ上,
由勾股定理可得$\sqrt{{R}^{2}-(\frac{\sqrt{5}}{2})^{2}}$+$\sqrt{{R}^{2}-(\frac{\sqrt{3}}{2})^{2}}$=1,
解得R=$\frac{\sqrt{21}}{4}$.
點評 本小題主要考查空間線面關系、幾何體的體積等知識,考查數形結合、化歸與轉化的數學思想方法,以及空間想象能力、推理論證能力和運算求解能力,訓練了正弦定理和余弦定理的應用,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-$\frac{3}{4}$,6) | B. | (-6,$\frac{3}{4}$) | C. | (-∞,-6)∪($\frac{3}{4}$,+∞) | D. | (-∞,-$\frac{3}{4}$)∪(6,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com