16.已知集合A={-1,3},B={2,4},則A∩B=∅.

分析 根據(jù)交集的運(yùn)算定義計(jì)算即可.

解答 解:集合A={-1,3},B={2,4},
∴A∩B=∅;
故答案為:∅

點(diǎn)評(píng) 本題考查了交集的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.一質(zhì)點(diǎn)作直線運(yùn)動(dòng),前一半位移的運(yùn)動(dòng)速度恒為v1,整段運(yùn)動(dòng)的平均速度為v,設(shè)其后一半位移的速度大小不變,求該速度的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.直線ax+$\sqrt{2}$by=1與圓x2+y2=1相交于A,B兩點(diǎn)(其中a,b是實(shí)數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(a,b)與點(diǎn)(1,0)之間距離的最小值為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若數(shù)列{an}滿足a1=$\frac{1}{2},{a_{n+1}}=a_n^2+{a_n}$,n∈N+,且bn=$\frac{1}{{1+{a_n}}}$,Pn=b1•b2…bn,Sn=b1+b2+…+bn,則2Pn+Sn=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t為參數(shù)),若以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=2cosθ+4sinθ.
(1)求直線l和曲線C的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求直線l與曲線C公共點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知雙曲線C的離心率為2,它的一個(gè)焦點(diǎn)是拋物線x2=8y的焦點(diǎn),則雙曲線C的標(biāo)準(zhǔn)方程為y2-$\frac{{x}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,矩形ABCD所在平面與三角形ECD所在平面相交于CD,AE⊥平面ECD.
(1)求證:AB⊥平面ADE;
(2)若點(diǎn)M在線段AE上,AM=2ME,N為線段CD中點(diǎn),求證:EN∥平面BDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知a,b∈R,i為虛數(shù)單位,若a-i=2+bi,則a+b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\sqrt{2}sin(2x+\frac{π}{4})$,有下列四個(gè)結(jié)論:
①函數(shù)f(x)在區(qū)間[-$\frac{3π}{8}$,$\frac{π}{8}$]上是增函數(shù):
②點(diǎn)($\frac{3π}{8}$,0)是函數(shù)f(x)圖象的一個(gè)對(duì)稱中心;
③函數(shù)f(x)的圖象可以由函數(shù)y=$\sqrt{2}$sin2x的圖象向左平移$\frac{π}{4}$得到;
④若x∈[0,$\frac{π}{2}$],則函數(shù)f(x)的值域?yàn)閇0,$\sqrt{2}$].
則所有正確結(jié)論的序號(hào)是①②.

查看答案和解析>>

同步練習(xí)冊(cè)答案