【題目】某公司生產(chǎn)的某批產(chǎn)品的銷(xiāo)售量萬(wàn)件(生產(chǎn)量與銷(xiāo)售量相等)與促銷(xiāo)費(fèi)用萬(wàn)元滿(mǎn)足 (其中,為正常數(shù)).已知生產(chǎn)該批產(chǎn)品還需投入成本萬(wàn)元(不含促銷(xiāo)費(fèi)用),產(chǎn)品的銷(xiāo)售價(jià)格定為元/件
(1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);(注:利潤(rùn)=銷(xiāo)售收入-促銷(xiāo)費(fèi)-投入成本)
(2)當(dāng)促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),該公司的利潤(rùn)最大?
【答案】(1) .
(2)當(dāng)時(shí),促銷(xiāo)費(fèi)用投入2萬(wàn)元,廠(chǎng)家的利潤(rùn)最大;當(dāng)時(shí)促銷(xiāo)費(fèi)用投入萬(wàn)元,廠(chǎng)家的利潤(rùn)最大.
【解析】
試題分析:(1)根據(jù)利潤(rùn)等于銷(xiāo)售額減去促銷(xiāo)費(fèi)用及投入成本,列出函數(shù)關(guān)系式:再將代入化簡(jiǎn)得(2)利用基本不等式求最值,要注意其等號(hào)取法,本題需結(jié)合定義域進(jìn)行討論:當(dāng)且僅當(dāng)時(shí),取等號(hào).當(dāng)時(shí),促銷(xiāo)費(fèi)用投入2萬(wàn)元時(shí),該公司的利潤(rùn)最大;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,促銷(xiāo)費(fèi)用投入萬(wàn)元時(shí),該公司的利潤(rùn)最大
試題解析:(1)由題意得:3分
將代入化簡(jiǎn)得
5分
(2)
當(dāng)且僅當(dāng)時(shí),取等號(hào) 8分
當(dāng)時(shí),促銷(xiāo)費(fèi)用投入2萬(wàn)元時(shí),該公司的利潤(rùn)最大 9分
當(dāng)時(shí),,此時(shí)函數(shù)在上單調(diào)遞增
所以當(dāng)時(shí),函數(shù)在上單調(diào)遞增 11分
所以時(shí),函數(shù)有最大值,即促銷(xiāo)費(fèi)用投入萬(wàn)元時(shí),該公司的利潤(rùn)最大 12分
綜上,當(dāng)時(shí),促銷(xiāo)費(fèi)用投入2萬(wàn)元時(shí),該公司的利潤(rùn)最大;
當(dāng)時(shí),促銷(xiāo)費(fèi)用投入萬(wàn)元時(shí),該公司的利潤(rùn)最大 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有個(gè)大小相同的黑球和白球.已知從袋中任意摸出個(gè)球,至少得到個(gè)白球的概率是.
(1)求白球的個(gè)數(shù);
(2)從袋中任意摸出個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)x∈(0,1)時(shí),求f(x)的單調(diào)性;
(2)若h(x)=(x2﹣x)f(x),且方程h(x)=m有兩個(gè)不相等的實(shí)數(shù)根x1 , x2 . 求證:x1+x2>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)設(shè)函數(shù)f(x)=|x﹣ |+|x﹣a|,x∈R,若關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a的最大值;
(2)已知正數(shù)x,y,z滿(mǎn)足x+2y+3z=1,求 + + 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中是自然對(duì)數(shù)的底數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)記
①當(dāng)時(shí),試判斷的導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù);
②求證:時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)滿(mǎn)足:對(duì)任意都有.
(1)求證:函數(shù)是奇函數(shù);
(2)如果當(dāng)時(shí),有,試判斷在上的單調(diào)性,并用定義證明你的判斷;
(3)在(2)的條件下,若對(duì)滿(mǎn)足不等式的任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司訂購(gòu)了一批樹(shù)苗,為了檢測(cè)這批樹(shù)苗是否合格,從中隨機(jī)抽測(cè) 株樹(shù)苗的高度,經(jīng)數(shù)據(jù)處理得到如圖的頻率分布直方圖,起中最高的 株樹(shù)苗高度的莖葉圖如圖所示,以這 株樹(shù)苗的高度的頻率估計(jì)整批樹(shù)苗高度的概率.
(1)求這批樹(shù)苗的高度高于 米的概率,并求圖19-1中, , , 的值;
(2)若從這批樹(shù)苗中隨機(jī)選取 株,記 為高度在 的樹(shù)苗數(shù)列,求 的分布列和數(shù)學(xué)期望.
(3)若變量 滿(mǎn)足且 ,則稱(chēng)變量 滿(mǎn)足近似于正態(tài)分布 的概率分布.如果這批樹(shù)苗的高度滿(mǎn)足近似于正態(tài)分布 的概率分布,則認(rèn)為這批樹(shù)苗是合格的,將順利獲得簽收;否則,公司將拒絕簽收.試問(wèn),該批樹(shù)苗能否被簽收?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com