7.已知f(x),g(x)均為奇函數(shù),且F(x)=af(x)+bg(x)+2在(0,+∞)有最大值5(ab≠0),則F(x)在(-∞,0)上的最小值為-1.

分析 根據(jù)定義得出f(-x)+f(x)=0,g(-x)+g(x)=0,即F(x)+F(-x)=4,根據(jù)F(x)圖象關(guān)于(0,2)對稱,求解得出F(x)在(-∞,0)上的最小值F(-x0)=4-5=-1.

解答 解:∵f(x)和g(x)都是定義域在R上的奇函數(shù),若F(x)=af(x)+bg(x)+2,
則F(x)-2=af(x)+bg(x)為奇函數(shù),
∵f(-x)+f(x)=0,g(-x)+g(x)=0,
∴F(x)+F(-x)=4,
F(x)圖象關(guān)于(0,2)對稱,
∵在(0,+∞)上有最大值為5,
∴最大值為F(x0)=5,
即F(x)在(-∞,0)上的最小值F(-x0)=4-5=-1.
故F(x)在(-∞,0)上的最小值為-1,
故答案為:-1

點評 本題考查了函數(shù)的性質(zhì),運用奇函數(shù)求解即可,考查學(xué)生的運算推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2|x-2|-1}&{1≤x≤3}\\{\frac{1}{2}f(\frac{x}{3})}&{x>3}\end{array}\right.$,則方程f(x)=$\frac{1}{2}$的解的個數(shù)為( 。
A.2個B.3個C.4個D.4個以上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在數(shù)列{an}中,前n項和為Sn,且2Sn=n2+n.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$,數(shù)列{bn}的前n項和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=cos2x+$\frac{1}{2}$sin(2x+$\frac{π}{2}$)-$\frac{1}{2}$.
(1)求f(x)在($\frac{π}{6}$,$\frac{2π}{3}$)上的值域.
(2)設(shè)A,B,C為△ABC的三個內(nèi)角,若角C滿足f($\frac{C}{2}$)=$\frac{\sqrt{2}}{2}$,且邊c=$\sqrt{2}$a,求角A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=-x3-x+1.求證:
(1)f(x)在定義域上是減函數(shù);
(2)函數(shù)y=f(x)圖象與x軸最多有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,若asinBcosC+csinBcosA=$\frac{1}{2}$b,且ac=4,則△ABC的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其左右焦點分別為F1,F(xiàn)2,焦距為4,雙曲線C2:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1,C1,C2的離心率互為倒數(shù).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過F2作直線交拋物線y2=2x于A,B兩點,射線OA,OB分別交橢圓C1于點D,E.證明:$\frac{|OD||OE|}{|DE|}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.△ABC所在平面內(nèi)有一點O,滿足2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,過點O的直線分別交AB,AC于點M,N,且$\overrightarrow{AM}$=λ$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AC}$,則λ=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓$\frac{{x}^{2}}{2}$+y2=1的上頂點為A,右焦點為F,直線l與橢圓交于B、C兩點,且△ABC的垂心為F.
(1)求直線l的方程;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案