已知函數(shù).
(1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
(2)記函數(shù),若的最小值是,求函數(shù)的解析式.
(1);(2).

試題分析:本題考查函數(shù)與導(dǎo)數(shù)及運(yùn)用導(dǎo)數(shù)求單調(diào)區(qū)間、最值等數(shù)學(xué)知識(shí)和方法,考查函數(shù)思想、分類討論思想.第一問,先求導(dǎo)數(shù),將已知轉(zhuǎn)化為恒成立問題,即恒成立,即上恒成立,所以本問的關(guān)鍵是求的最大值問題,求導(dǎo)數(shù),判斷導(dǎo)數(shù)的正負(fù),確定函數(shù)的單調(diào)性求最大值;第二問,先將代入求出解析式,求出,由于含參數(shù),所以需要討論的正負(fù),當(dāng)時(shí),,所以單調(diào)遞增,無最小值,不合題意,當(dāng)時(shí),求導(dǎo),判斷導(dǎo)數(shù)的正負(fù),確定函數(shù)的單調(diào)性,求出最小值,讓它等于已知條件-6,列出等式,解出的值,本問應(yīng)注意函數(shù)的定義域.
試題解析:⑴
上恒成立,

恒成立,
單調(diào)遞減,
 
                                        6分
(2)

易知,時(shí),恒成立,
單調(diào)遞增,無最小值,不合題意

,則(舍負(fù))
上單調(diào)遞減,在上單調(diào)遞增,
是函數(shù)的極小值點(diǎn).
,
解得,.               12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時(shí),對(duì)于任意,總有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義在上的函數(shù),其中為常數(shù).
(1)當(dāng)是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),若,在處取得最大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)若,試討論的單調(diào)性;
(2)若對(duì),總使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)上是單調(diào)減函數(shù),則實(shí)數(shù)的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若冪函數(shù)f(x)的圖象過點(diǎn)(,),則函數(shù)g(x)=f(x)的單調(diào)遞減區(qū)間為(   )
A.(-∞,0)B.(-∞,-2)C.(-2,-1)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=x3-4x+a,0<a<2.若f(x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,則(   )
A.x1>-1B.x2<0C.x2>0D.x3>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是自然對(duì)數(shù)的底數(shù),若函數(shù)的圖象始終在軸的上方,則實(shí)數(shù)的取值范圍       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知R上可導(dǎo)函數(shù)的圖象如圖所示,則不等式的解集為(  )
 
A.(-∞,-2)∪(1,+∞)
B.(-∞,-2)∪(1,2)
C.(-∞,-1)∪(-1,0)∪(2,+∞)
D.(-∞,-1)∪(-1,1)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案