16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-1≥0\\ 2x-y-2≤0\\ x-2y+2≥0\end{array}\right.$,則x-3y的最小值為( 。
A.-4B.-3C.0D.1

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:設(shè)z=x-3y,則得y=$\frac{1}{3}x-\frac{z}{3}$,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線y=$\frac{1}{3}x-\frac{z}{3}$,
由圖象可知當(dāng)直線y=$\frac{1}{3}x-\frac{z}{3}$經(jīng)過點(diǎn)A時(shí),直線y=$\frac{1}{3}x-\frac{z}{3}$的截距最大,
此時(shí)z最小,
由$\left\{\begin{array}{l}{2x-y-2=0}\\{x-2y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2).
將A(2,2)代入目標(biāo)函數(shù)z=x-3y,
得z=2-3×2=2-6=-4.
∴目標(biāo)函數(shù)z=x-3y的最小值是-4.
故選:A.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為 f′(x),對(duì)任意x∈R都有f(x)>f′(x)成立,則( 。
A.3f(ln2)<2f(ln3)B.3f(ln2)=2f(ln3)
C.3f(ln2)>2f(ln3)D.3f(ln2)與2f(ln3)的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在多面體ABCDEF中,四邊形ABCD是邊長(zhǎng)為1的正方形,BF⊥平面ABCD,DE∥BF.
(Ⅰ)求證:AC⊥EF;
(Ⅱ)若BF=2,DE=1,在EF上取點(diǎn)G,使BG∥平面ACE,求直線AG與平面ACE所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知A(-1,2,7),B(-3,10,-9),則線段AB中點(diǎn)到坐標(biāo)原點(diǎn)的距離是( 。
A.$\sqrt{21}$B.21C.$\sqrt{41}$D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)={2^{{x^2}+1}}$,$x∈[{-1,\;\sqrt{2}}]$的值域?yàn)椋ā 。?table class="qanwser">A.[2,8]B.[4,8]C.[1,3]D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知α,β為銳角,sinα=$\frac{3}{5}$,tanβ=2,則sin($\frac{π}{2}$+α)=$\frac{4}{5}$,tan(α+β)=$-\frac{11}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式組$\left\{\begin{array}{l}-2≤x≤2\\ 0≤y≤4\end{array}\right.$表示的點(diǎn)集記為M,不等式組$\left\{\begin{array}{l}x-y+2≥0\\ y={x^2}\end{array}\right.$表示的點(diǎn)集記為N,在M中任取一點(diǎn)P,則P∈N的概率為( 。
A.$\frac{7}{16}$B.$\frac{9}{16}$C.$\frac{7}{32}$D.$\frac{9}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知正實(shí)數(shù)m,n滿足m+n=1,且使$\frac{1}{m}+\frac{16}{n}$取得最小值.若曲線y=xa過點(diǎn)P($\frac{m}{5}$,$\frac{n}{4}$),則a的值為(  )
A.-1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知等比數(shù)列{an}的各項(xiàng)都是正數(shù),且3a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{20}+{a}_{19}}{{a}_{18}+{a}_{17}}$=( 。
A.1B.3C.6D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案