【題目】如圖是九江市20194月至20203月每月最低氣溫與最高氣溫(℃)的折線統(tǒng)計圖:已知每月最低氣溫與最高氣溫的線性相關系數(shù)r0.83,則下列結論錯誤的是(

A.每月最低氣溫與最高氣溫有較強的線性相關性,且二者為線性正相關

B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10

C.912月的月溫差相對于58月,波動性更大

D.每月最高氣溫與最低氣溫的平均值在前6個月逐月增加

【答案】D

【解析】

根據(jù)相關系數(shù)的性質判斷A;根據(jù)所給折線圖,對B,C,D逐項進行判斷.

每月最低氣溫與最高氣溫的線性相關系數(shù)r0.83,比較接近于,則每月最低氣溫與最高氣溫有較強的線性相關性,且二者為線性正相關,則A正確;

由所給的折線圖可以看出月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10月,則B正確;

58月的月溫差分別為18,17,16,16912月的月溫差分別為20,31,24,21,則912月的月溫差相對于58月,波動性更大,C正確;

每月的最高氣溫與最低氣溫的平均值在前5個月逐月增加,第六個月開始減少,所以A正確,則D錯誤;

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足,an+1an+1,a1a,則一定存在a,使數(shù)列中(

A.存在nN*,有an+1an+20

B.存在nN*,有(an+11)(an+21)<0

C.存在nN*,有

D.存在nN*,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為其導函數(shù).

)當,時,求函數(shù)的極值;

)設,當時,對任意的,都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為上一點.

(1)求橢圓的方程;

(2)設分別關于兩坐標軸及坐標原點的對稱點,平行于的直線于異于的兩點.點關于原點的對稱點為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中,,且

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設數(shù)列的前項和為,求滿足的所有正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)若在定義域內(nèi)單調(diào)遞增,求的取值范圍;

)若存在極大值點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知內(nèi)接于圓O,AB是圓O的直徑,四邊形DBCE為平行四邊形,FCD的中點,

1)證明:平面ADE;

2)若四邊形DBCE為矩形,且四邊形DBCE所在的平面與圓O所在的平面互相垂直,,AE與圓O所在的平面的線面角為60°.求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體的底面為正方形,,,,,是棱的中點,平面與直線相交于點

1)證明:直線平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南北朝時代的偉大科學家祖暅在數(shù)學上有突出貢獻,他在實踐的基礎上提出祖暅原理:冪勢既同,則積不容異.其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則、不總相等,不相等的(

A.充分而不必要條件B.必要而不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案