函數(shù)f(x)=x2+14x-3在區(qū)間(-5,5)上最大值、最小值情況為(  )
A、有最大值,沒最小值
B、有最小值,沒最大值
C、有最大值,也有最小值
D、沒有最大值,也沒有最小值
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用配方法將二次函數(shù)進(jìn)行配方,即可得到函數(shù)的最值情況.
解答: 解:∵f(x)=x2+14x-3=(x+7)-52,
∴對(duì)稱軸為x=-7,拋物線開口向上,
∴函數(shù)f(x)在(-5,5)單調(diào)遞增,
∴函數(shù)無最大值和最小值.
故選:D.
點(diǎn)評(píng):本題主要考查二次函數(shù)的圖象和性質(zhì),利用配方法確定二次函數(shù)的對(duì)稱軸是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R,且a<b,則( 。
A、ac>bc
B、
1
a
1
b
C、a2>b2
D、a3<b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的斜率為k(k≠0),它在x軸、y軸上的截距分別為k、2k,則直線l的方程為( 。
A、2x-y-4=0
B、2x-y+4=0
C、2x+y-4=0
D、2x+y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
4x+2

(1)若0<a<1,求f(a)+f(1-a)的值;
(2)求f(
1
2013
)+f(
2
2013
)+…+f(
2012
2013
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2|log2a|=
1
a
,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)P(3,2),且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),如圖所示,則△ABO的面積的最小值為( 。
A、6B、12C、24D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-5:不等式選講】
已知不等式x+|3x-3|<5的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,證明:ab-2<2b-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人開汽車以50km/h的速率從A地到150km遠(yuǎn)處的B地,在B地停留2h后,再以60km/h的速率返回A地.
(1)把汽車與A地的距離xkm表示為時(shí)間th(從A地出發(fā)時(shí)開始)的函數(shù),并畫出函數(shù)的圖象;
(2)把車速vkm/h表示為th的函數(shù),并畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某幾何體的正視圖(主視圖),側(cè)視圖(左視圖)和俯視圖分別是等腰梯形,等腰直角三角形和長(zhǎng)方形,則該幾何體體積為( 。
A、
5
3
B、
4
2
3
C、
7
3
D、
10
3

查看答案和解析>>

同步練習(xí)冊(cè)答案