曲線y=e-5x+2在點(0,3)處的切線方程為
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的概念及應用
分析:利用導數(shù)的幾何意義求得切線的斜率,點斜式寫出切線方程.
解答: 解;y′=-5e-5x,∴k=-5,
∴曲線y=e-5x+2在點(0,3)處的切線方程為y-3=-5x,即y=-5x+3.
故答案為:y=-5x+3
點評:本題主要考查利用導數(shù)的幾何意義求曲線的切線方程,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

擲兩顆均勻的骰子,則點數(shù)之和為5的概率等于( 。
A、
1
18
B、
1
9
C、
1
6
D、
1
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設二面角D-AE-C為60°,AP=1,AD=
3
,求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a≠b,c=
3
,cos2A-cos2B=
3
sinAcosA-
3
sinBcosB.
(Ⅰ)求角C的大;
(Ⅱ)若sinA=
4
5
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校夏令營有3名男同學,A、B、C和3名女同學X,Y,Z,其年級情況如表:
一年級二年級三年級
男同學ABC
女同學XYZ
現(xiàn)從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同)
(Ⅰ)用表中字母列舉出所有可能的結(jié)果;
(Ⅱ)設M為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=
1
2
AD,E,F(xiàn)分別為線段AD,PC的中點.
(Ⅰ)求證:AP∥平面BEF;
(Ⅱ)求證:BE⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知AB,BC是⊙O的兩條弦,AO⊥BC,AB=
3
,BC=2
2
,則⊙O的半徑等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
2-2i
1+i
=
 

查看答案和解析>>

同步練習冊答案