已知函數(shù)在區(qū)間上的圖象如圖所示,即,,,則之間的大小關(guān)系為(  )
A.B.
C.D.
 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知奇函數(shù)f(x)在[a,b]上是減函數(shù),試判斷它在[-b,-a]的單調(diào)性,并加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域為D,若對于任意,當(dāng)時,都有,則稱函數(shù)在D上為非減函數(shù)。設(shè)函數(shù)在[0,1]上為非減函數(shù),且滿足以下三個條件:
;②;

的值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù),(x>0).
(1)當(dāng)0<a<b,且f(a)=f(b)時,求的值 ;   
(2)是否存在實數(shù)aba<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,求出a,b的值,若不存在,請說明理由.
(3)若存在實數(shù)a,ba<b),使得函數(shù)y=f(x)的定義域為 [a,b]時,值域為 [ma,mb],(m≠0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義域為R的函數(shù)對任意x都有,若當(dāng)時,單調(diào)遞增,則當(dāng)時,有(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

閱讀下列材料,然后解答問題;對于任意實數(shù),符號[]表示“不超過的最大整數(shù)”,在數(shù)軸上,當(dāng)是整數(shù),[]是,當(dāng)不是整數(shù)時,[]是左側(cè)的第一個整數(shù),這個函數(shù)叫做“取整函數(shù)”,也叫高斯()函數(shù),如[-2]=-2、[-1.5]=-2、[2.5]="2 " 定義函數(shù){}=-[],給出下列四個命題;
①函數(shù)[]的定義域是,值域為[0,1]   ②方程{}=有無數(shù)個解;
③函數(shù){}是周期函數(shù)                   ④函數(shù){}是增函數(shù)。
其中正確命題的序號是(    )   
A.①④B.②③C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)上是關(guān)于x的減函數(shù),則實數(shù)a的取值范圍為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)對任意,都有,
> 0時,< 0,
(1)求;  
(2)求證:是奇函數(shù);
(3)請寫出一個符合條件的函數(shù);
(4)證明在R上是減函數(shù),并求當(dāng)時,的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義,設(shè)實數(shù)滿足約束條件的取值范圍是(    )。
A.[-4,4]B.[-2,4]  C.[-1,4] D.[-4,2]

查看答案和解析>>

同步練習(xí)冊答案