15.設雙曲線中心是坐標原點,實軸在y軸上,離心率為$\frac{\sqrt{5}}{2}$,已知點P(0,5)到雙曲線的最近距離是2,求雙曲線的方程.

分析 根據(jù)雙曲線的定義,由點P(0,5)到此雙曲線上的點的最近距離為2,可轉(zhuǎn)化為二次函數(shù)的最大(。┲祮栴}來討論,得到a、b應滿足的另一關系式.從而求出a2、b2,本題得解.

解答 解:依題意,設雙曲線的方程為$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1(a>0,b>0).
∵e=$\frac{c}{a}$=$\frac{{\sqrt{5}}}{2}$,c2=a2+b2,∴a2=4b2
設M(x,y)為雙曲線上任一點,則
|PM|2=x2+(y-5)2
=b2($\frac{y^2}{a^2}$-1)+(y-5)2
=$\frac{5}{4}$(y-4)2+5-b2(|y|≥2b).
①若4≥2b,則當y=4時,
|PM|min2=5-b2=4,得b2=1,a2=4.
從而所求雙曲線方程為$\frac{y^2}{4}$-x2=1.
②若4<2b,則當y=2b時,
|PM|min2=4b2-20b+25=4,
得b=$\frac{7}{2}$(舍去b=$\frac{3}{2}$),b2=$\frac{49}{4}$,a2=49.
從而所求雙曲線方程為$\frac{y^2}{49}$-$\frac{{4{x^2}}}{49}$=1.

點評 本題主要考查雙曲線的標準方程,結合雙曲線的基本性質(zhì)--離心率、基本關系,考查兩點間的距離公式.考查學生的運算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,以|F1F2|為直徑的圓與雙曲線交于A,B,C,D四點,且四邊形ABCD的一條對角線所在的直線的斜率為$\frac{\sqrt{3}}{3}$,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖.在底面為正方形的四棱錐P-ABCD中,PA⊥平面ABCD,則圖中互相垂直的平面有5對.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,M,N,P分別是AB,BC,CA邊上靠近A,B,C的三等分點,O是△ABC平面上的任意一點,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,則$\overrightarrow{OM}$+$\overrightarrow{ON}$+$\overrightarrow{OP}$=$\frac{1}{3}\overrightarrow{{e}_{1}}$$-\frac{1}{2}\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的內(nèi)接矩形面積的最大值是( 。
A.16B.25C.40D.80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,且|$\overrightarrow{a}$|=|$\overrightarrow$|=1,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{2}$,則△ABC的形狀是(  )
A.等邊三角形B.銳角三角形C.斜三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知m∈R,直線l:mx-(m2+1)y=4m和圓C:x2+y2-8x+4y+16=0
(Ⅰ)求直線l斜率的取值范圍;
(Ⅱ)是否存在直線l,使直線l將圓分割成弧長的比值為$\frac{1}{3}$的兩段圓。咳舸嬖,求出直線1的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設集合A={y|y=sinx},B={y|y=2x},則A∩B=(  )
A.(-1,0)B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.正方體ABCD-A1B1C1D1中:
(1)求二面角C-AD1-D的余弦值;
(2)求BB1與平面ACD1所成角的余弦值.

查看答案和解析>>

同步練習冊答案