【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損.3萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個(gè)銷售季度的市場需求量,T(單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤. (Ⅰ)將T表示為x的函數(shù),求出該函數(shù)表達(dá)式;
(Ⅱ)根據(jù)直方圖估計(jì)利潤T不少于57萬元的概率;
(Ⅲ)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷售季度內(nèi)市場需求量x的平均數(shù)與中位數(shù)的大。

【答案】
【解析】(Ⅰ)計(jì)算x∈[100,130)和x∈[130,150]時(shí)T的值,用分段函數(shù)表示T的解析式;(Ⅱ)計(jì)算利潤T不少于57萬元時(shí)x的取值范圍,求出對應(yīng)的頻率值即可;(Ⅲ)利用每一小組底邊的中點(diǎn)乘以對應(yīng)的頻率求和得出平均數(shù), 根據(jù)中位數(shù)兩邊頻率相等求出中位數(shù)的大。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息,以及對極差、方差與標(biāo)準(zhǔn)差的理解,了解標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時(shí),樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實(shí)際問題時(shí),多采用標(biāo)準(zhǔn)差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x,求f(x)在x<0時(shí)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a、b為空間兩條不同的直線,α、β為空間兩個(gè)不同的平面,則直線a⊥平面α的一個(gè)充分不必要條件是(
A.a∥β且α⊥β
B.aβ且α⊥β
C.a⊥b且b∥α
D.a⊥β且α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,S10=120,那么a2+a9的值是(
A.12
B.24
C.16
D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A表示事件“三件產(chǎn)品全不是次品”,B表示事件“三件產(chǎn)品全是次品”,C表示事件“三件產(chǎn)品至少有一件是次品”,則下列結(jié)論正確的是(
A.事件A與C互斥
B.任何兩個(gè)事件均互斥
C.事件B與C互斥
D.任何兩個(gè)事件均不互斥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有這樣一段演繹推理“有些有理數(shù)是真分?jǐn)?shù),整數(shù)是有理數(shù),則整數(shù)是真分?jǐn)?shù)”結(jié)論顯然是錯(cuò)誤的,是因?yàn)椋?/span>
A.大前提錯(cuò)誤
B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤
D.非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一堆產(chǎn)品(其中正品與次品數(shù)均多于2件)中任取2件,觀察正品件數(shù)和次品件數(shù),則下列每對事件中,是對立事件的是(
A.恰好有1件次品和恰好有兩件次品
B.至少有1件次品和全是次品
C.至少有1件次品和全是正品
D.至少有1件正品和至少有1件次品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ln(x+1)的定義域?yàn)?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=﹣x,g(f(x))=2x+x2 , 則g(﹣1)=

查看答案和解析>>

同步練習(xí)冊答案