某種福利彩票每期的開獎方式是,從1,2,…,20的基本號碼中由電腦隨機(jī)選出4個不同的幸運(yùn)號碼(不計(jì)順序),凡購買彩票者,可自由選擇1個,2個,3個或4個不同的基本號碼組合成一注彩票,若彩票上所選的基本號碼都為幸運(yùn)號碼就中獎.根據(jù)所選基本號碼(幸運(yùn)號碼)的個數(shù),中獎等級分為
基本號碼數(shù)
(幸運(yùn)號碼數(shù))
1234
中獎等級四等獎三等獎二等獎一等獎
(1)求購買一注彩票獲得三等獎或者四等獎的概率;
(2)設(shè)隨機(jī)變量X表示一注彩票的獲獎等級,X取值0,1,2,3,4(0表示未獲獎),求隨機(jī)變量X的分布列.
考點(diǎn):離散型隨機(jī)變量的期望與方差,相互獨(dú)立事件的概率乘法公式
專題:概率與統(tǒng)計(jì)
分析:(1)由互斥事件概率加法公式能求出購買一注彩票獲得三等獎或者四等獎的概率.
(2)由題意知X的所有可能取值為0,1,2,3,4,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量X的分布列.
解答: (本小題滿分12分)
解:(1)設(shè)事件A表示獲得三等獎或四等獎,
則P(A)=
C
1
4
C
1
20
+
C
2
4
C
2
20
=
22
95

(2)由題意知X的所有可能取值為0,1,2,3,4,
∴P(X=1)=
C
1
4
C
1
20
=
1
5
,
P(X=2)=
C
2
4
C
2
20
=
3
95
,
P(X=3)=
C
3
4
C
3
20
=
1
285
,
P(X=4)=
C
4
4
C
4
20
=
1
4845
,
P(X=0)=1-
1
5
-
3
95
-
1
285
-
1
4845
=
13
17
,
∴隨機(jī)變量X的分布列為:
 X 0
 P 
13
17
 
1
5
 
3
9
 
1
285
1
4845
 
點(diǎn)評:本題考查概率的求法,考查離散型隨機(jī)變量的分布列的求法,解題時要認(rèn)真審題,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax+3,f(2016)=20,則f(-2016)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)滿足f(x+1)=f(x-1),且當(dāng)x∈[0,1]時,f(x)=x2,則關(guān)于x的方程f(x)=
1
2
|x|在[-1,2]上根的個數(shù)是( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
f1(x) , x≤0
f2(x), x>0
,則下列命題正確的是( 。
A、若y=f1(x)(x≤0)是增函數(shù),y=f2(x)(x>0)是減函數(shù),則y=f(x)存在最大值
B、若y=f(x)存在最大值,則y=f1(x)(x≤0)是增函數(shù),y=f2(x)(x>0)是減函數(shù)
C、若y=f1(x)(x≤0),y=f2(x)(x>0)均為減函數(shù),則y=f(x)是減函數(shù)
D、若y=f(x)是減函數(shù),則y=f1(x)(x≤0),y=f2(x)(x>0)均為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},則M與P的關(guān)系為( 。
A、M?PB、P?M
C、M⊆PD、M?P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,且E為PB的中點(diǎn)AC與BD交于點(diǎn)M,
(1)求證:ME∥PD;
(2)當(dāng)PD=
2
AB,求AE與平面PBD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(Ⅰ)設(shè)點(diǎn)M是線段BD上一個動點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
(Ⅱ)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:1+
1
2
+
1
3
+…+
1
n
<2
n
(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x-sin2x+2
3
sinxcosx.
(Ⅰ)求f(
π
12
)的值和函數(shù)f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)遞減區(qū)間及最大值,并指出取得最大值時x的取值集合.

查看答案和解析>>

同步練習(xí)冊答案