【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

Ⅰ)當,求曲線在點處的切線方程;

Ⅱ)求函數(shù)的單調區(qū)間;

Ⅲ)已知函數(shù)處取得極小值,不等式的解集為,求實數(shù)的取值范圍.

【答案】12上遞增,上遞減3

【解析】試題分析:(1)先求導數(shù),根據(jù)導數(shù)幾何意義得切線斜率,最后根據(jù)點斜式得切線方程,(2)根據(jù)導函數(shù)零點情況分類討論函數(shù)單調性,(3)根據(jù)極值點求a,將集合語言轉化為上有解,分離轉化為函數(shù)最值: ,最后通過導數(shù)求函數(shù)最小值得實數(shù)的取值范圍.

試題解析:解:,

曲線在點處的切線方程為

, 恒成立.此時的遞增區(qū)間為

,, ,

此時上遞增,上遞減.

Ⅲ)由函數(shù)處取得極小值得: 經(jīng)檢驗此時處取得極小值.

因為,所以上有解.,使得成立.

使得成立.

所以

所以上單調遞減,上單調遞增,

所以的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從某市主辦的科技知識競賽的學生成績中隨機選取了40名學生的成績作為樣本,已知這40名學生的成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組,第一組;第二組;…;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

(1)求成績在區(qū)間內(nèi)的學生人數(shù);

(2)從成績大于等于80分的學生中隨機選取2名,求至少有1名學生的成績在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】滿足約束條件且向量,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)的兩個數(shù)列和{}滿足:an+1,n∈N*.

(1)設bn+1=1+,n∈N*,求證:數(shù)列是等差數(shù)列;

(2)設bn+1·,n∈N*,且是等比數(shù)列,求a1b1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為01,2,3四個相同小球的抽獎箱中,每次取出一球,記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼之和等于6,則中一等獎,等于5中二等獎,等于43中三等獎.

1)求中三等獎的概率;

2)求中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,底面邊長為2,的中點,三棱柱的體積.

(1)求三棱柱的表面積;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直三棱柱中,底面ABC為等腰直角三角形,,,M是側棱上一點,設,用空間向量知識解答下列問題.

1,證明:;

2,求直線與平面ABM所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)恰有3個零點,則實數(shù)的取值范圍為( )

A. B. C. D.

【答案】A

【解析】,上單調遞減.,上遞增,那么零點個數(shù)至多有一個,不符合題意,.故需,,使得第一段有一個零點,.對于第二段, ,故需在區(qū)間有兩個零點, ,上遞增,上遞減,所以,解得.綜上所述,

點睛本小題主要考查函數(shù)的圖象與性質,考查含有參數(shù)的分段函數(shù)零點問題的求解策略,考查了利用導數(shù)研究函數(shù)的單調區(qū)間,極值,最值等基本問題.其中用到了多種方法,首先對于第一段函數(shù)的分析利用了分離常數(shù)法,且直接看出函數(shù)的單調性.第二段函數(shù)利用的是導數(shù)來研究圖像與性質.

型】單選題
束】
13

【題目】, 滿足約束條件,則的最大值為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小王在某社交網(wǎng) 絡的朋友圈中,向在線的甲、乙、丙隨機發(fā)放紅包,每次發(fā)放1個.

(1)若小王發(fā)放5元的紅包2個,求甲恰得1個的概率;

(2)若小王發(fā)放3個紅包,其中5元的2個,10元的1個,記乙所得紅包的總錢數(shù)為X,求X的分布列.

查看答案和解析>>

同步練習冊答案