已知偶函數(shù)f(x)的定義域?yàn)閧x|x≠0,x∈R},若f(x)在(-∞,0)上為單調(diào)減函數(shù),且f(-2)=0,則不等式x•f(x)<0解集為
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得 f (2)=0,且在(0,+∞)上單調(diào)遞增,故當(dāng)x<-2或x>2 時,f(x)>0,當(dāng)-2<x<2時,f(x)<0.由此易求得x•f(x)<0的解集.
解答: 解:∵函數(shù)f(x)是偶函數(shù),在區(qū)間(-∞,0)上單調(diào)遞減,且f (-2)=0,
∴f (2)=0,且在(0,+∞)上單調(diào)遞增.
故當(dāng)x<-2或x>2 時,f(x)>0,
當(dāng)-2<x<0或0<x<2時,f(x)<0.
由不等式x•f(x)<0可得x與f(x)異號.
∴x•f(x)<0的解集為 (-∞,-2)∪(0,2).
故答案為:(-∞,-2)∪(0,2).
點(diǎn)評:本題主要考查函數(shù)的單調(diào)性和奇偶性的綜合應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,判斷出當(dāng)x<-2或x>2 時,f(x)>0,當(dāng)-2<x<2時,f(x)<0,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對某班一次測驗(yàn)成績進(jìn)行統(tǒng)計(jì),如下表所示:
分?jǐn)?shù)段100~9190~8180~7170~6160~5150~41
概率0.160.250.360.170.040.02
(1)求該班成績在[81,100]內(nèi)的概率;
(2)求該班成績在[61,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用定義證明:f(x)=x2在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
16
-
y2
9
=1上的點(diǎn)P到點(diǎn)(-5,0)的距離為6,則P到(5,0)距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意實(shí)數(shù)x,記x=[x]+(x),其中[x]是整數(shù),0≤(x)<1.設(shè)集合A={x|x2-[x]=1},B={x|
1
4
≤2x≤8},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若把英語單詞“error”的字母順序?qū)戝e了,則可能出現(xiàn)的錯誤共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-ax+b,f(b)=a,f(-1)=1,則f(-5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組中的M、P表示同一集合的是
 
(填序號).
①M(fèi)={3,-1},P={(3,-1)};
②M={(3,1)},P={(1,3)};
③M={y|y=x2-1,x∈R},P={a|a=x2-1,x∈R};
④M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x3
3
+
mx2+(m+n)x+1
2
的兩個極值點(diǎn)分別為x1,x2,且x1∈(0,1),x2∈(1,+∞);點(diǎn)P(m,n)表示的平面區(qū)域?yàn)镈,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A、(1,3]
B、(1,3)
C、(3,+∞)
D、[3,+∞)

查看答案和解析>>

同步練習(xí)冊答案