【題目】已知函數(shù)f(x)=-x3+2x2+2x,若存在滿足0≤x0≤3的實數(shù)x0,使得曲線yf(x)在點(x0,f(x0))處的切線與直線xmy-10=0垂直,則實數(shù)m的取值范圍是(  )

A. [6,+∞)B. (-∞,2]

C. [2,6]D. [5,6]

【答案】C

【解析】

先求函數(shù)的導數(shù),進而求出切線的斜率,由兩直線垂直斜率之積等于﹣1,得到4x0﹣x02+2=m,再由二次函數(shù)求出最值即可.

函數(shù)f(x)=﹣x3+2x2+2x的導數(shù)為f′(x)=﹣x2+4x+2.

曲線f(x)在點(x0,f(x0))處的切線斜率為4x0﹣x02+2,

由于切線垂直于直線x+my﹣10=0,則有4x0﹣x02+2=m,

由于0≤x0≤3,由4x0﹣x02+2=﹣(x0﹣2)2+6,對稱軸為x0=2,

當且僅當x0=2,取得最大值6;

x0=0時,取得最小值2.故m的取值范圍是[2,6].

答案:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】假設某種設備使用的年限(年)與所支出的維修費用(萬元)有以下統(tǒng)計資料:

使用年限

2

3

4

5

6

維修費用

2

4

5

6

7

若由資料知呈線性相關關系.試求:

1)求;

2)線性回歸方程

3)估計使用10年時,維修費用是多少?

附:利用最小二乘法計算的值時,可根據(jù)以下公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某工廠生產(chǎn)的一種產(chǎn)品的一項質(zhì)量指標值服從正態(tài)分布,若一件產(chǎn)品的質(zhì)量指標值介于90120之間時,稱該產(chǎn)品為優(yōu)質(zhì)品.

1)計算該工廠生產(chǎn)的這種產(chǎn)品的優(yōu)質(zhì)品率.

2)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中優(yōu)質(zhì)品的件數(shù),求隨機變量的數(shù)學期望.

3)必須從這工廠中購買多少件產(chǎn)品,才能使其中至少有1件產(chǎn)品是優(yōu)質(zhì)品的概率大于0.9?

①參考數(shù)據(jù):若隨機變量),則,,.

②計算時,所有的小數(shù)都精確到小數(shù)點后4位,例如:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019613日,三屆奧運亞軍,羽壇傳奇,馬來西亞名將李宗偉宣布退役,當天有大量網(wǎng)友關注此事件,某網(wǎng)上論壇從關注此事件跟帖中,隨機抽取了100名網(wǎng)友進行調(diào)查統(tǒng)計,先分別統(tǒng)計他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組;,得到如下圖所小的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強烈關注”,否則為“一般關注”,對這100名網(wǎng)友進一步統(tǒng)計,得到部分數(shù)據(jù)如下的列聯(lián)表.

1)在答題卡上補全2×2列聯(lián)表中數(shù)據(jù),并判斷能否有95%的把握認為網(wǎng)友對此事件是否為“強烈關注”與性別有關?

2)該論壇欲在上述“強烈關注”的網(wǎng)友中按性別進行分層抽樣,共抽取5人,并在此5人中隨機抽取兩名接受訪談,記女性訪談者的人數(shù)為占,求5的分布列與數(shù)學期望.

0.150

0.100

0.050

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式與數(shù)據(jù):,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)設,若對任意,均存在使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個正和一個平行四邊形ABDE在同一個平面內(nèi),其中,,ABDE的中點分別為F,G.現(xiàn)沿直線AB翻折成,使二面角,設CE中點為H.

1)(i)求證:平面平面AGH

ii)求異面直線ABCE所成角的正切值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線與橢圓有相同的焦點,直線為雙曲線的一條漸近線.

1)求雙曲線的方程;

2)過點的直線交雙曲線、兩點,交軸于點(點與的頂點不重合),當,且,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,為橢圓的左、右焦點,動點的坐標為,過點的直線與橢圓交于,兩點.

(3)的坐標;

(4)若直線,,的斜率之和為0,求的所有整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意的,若數(shù)列同時滿足下列兩個條件,則稱數(shù)列具有性質(zhì)m存在實數(shù)M,使得成立.

數(shù)列、中,、),判斷、是否具有性質(zhì)m;

若各項為正數(shù)的等比數(shù)列的前n項和為,且,,求證:數(shù)列具有性質(zhì)m;

數(shù)列的通項公式對于任意,數(shù)列具有性質(zhì)m,且對滿足條件的M的最小值,求整數(shù)t的值.

查看答案和解析>>

同步練習冊答案