【題目】求函數(shù)f(x)=ex(ex﹣a)﹣a2x(a∈R)的單調(diào)區(qū)間.
【答案】見解析.
【解析】
對函數(shù)進(jìn)行求導(dǎo),分a>0,a<0和a=0三種情況分別利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求其單調(diào)區(qū)間即可.
f′(x)=ex(ex﹣a)+exex﹣a2=2(ex+)(ex﹣a).
下面對a分類討論:a=0時,f(x)=e2x在R上單調(diào)遞增;
a>0時,令f′(x)=0,解得x=lna,可得:函數(shù)f(x)在(﹣∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增;
a<0時,令f′(x)=0,解得x=ln(﹣),可得:函數(shù)f(x)在(﹣∞,ln(﹣))上單調(diào)遞減,在(ln(﹣),+∞)上單調(diào)遞增.
綜上可得:a=0時,f(x)單調(diào)遞增區(qū)間為;
a>0時,函數(shù)f(x)的單調(diào)遞減區(qū)間為(﹣∞,lna),單調(diào)遞增區(qū)間為(lna,+∞);
a<0時,函數(shù)f(x)的單調(diào)遞減區(qū)間為(﹣∞,ln(﹣)),單調(diào)遞增區(qū)間為(ln(﹣),+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):
0 | 1 | 2 | 3 | |
0 | 0.7 | 1.6 | 3.3 |
為描述該超級快艇每小時航行費用Q與速度v的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)試從中確定最符合實際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式;
(2)該超級快艇應(yīng)以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個結(jié)論:
①是偶函數(shù);②在區(qū)間單調(diào)遞減;
③在有個零點;④的最大值為.
其中所有正確結(jié)論的編號是( )
A.①②④B.②④C.①④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個等級,等級系數(shù)X依次為1,2,……,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為4元/件,假定甲、乙兩廠得產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(I)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:
且X1的數(shù)字期望EX1=6,求a,b的值;
(II)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望.
在(I)、(II)的條件下,若以“性價比”為判斷標(biāo)準(zhǔn),則哪個工廠的產(chǎn)品更具可購買性?說明理由.
注:(1)產(chǎn)品的“性價比”=;
(2)“性價比”大的產(chǎn)品更具可購買性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,其前n項和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 證明:Tn+12=﹣2an+10bn(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率,點是橢圓上的一個動點,面積的最大值是.
(1)求橢圓的方程;
(2)若是橢圓上不重合的四點,與相交于點,,且,求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),求函數(shù)在區(qū)間上的最小值;
(3)某同學(xué)發(fā)現(xiàn):總存在正實數(shù),,使,試問:該同學(xué)的判斷是否正確?若不正確,請說明理由;若正確,請直接寫出的取值范圍(不需要解答過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com