已知函數(shù)f(x)=x2-2ax+a,x∈[-1,1]
(1)若函數(shù)f(x)在定義域上不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)的值域?yàn)閇-2,2]?若存在,求實(shí)數(shù)a的值;若不存在,說(shuō)明理由.
考點(diǎn):二次函數(shù)的性質(zhì),函數(shù)的值域,函數(shù)單調(diào)性的判斷與證明
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)首先,結(jié)合二次函數(shù)的對(duì)稱(chēng)軸與給定區(qū)間的位置關(guān)系,限制a的取值范圍;
(2)首先,假設(shè)存在,然后,結(jié)合函數(shù)的性質(zhì)進(jìn)行求解.
解答: 解:(1)∵f(x)=(x-a)2+a-a2
∴對(duì)稱(chēng)軸x=a,
∵x∈[-1,1]
∵函數(shù)f(x)在定義域上不是單調(diào)函數(shù),
∴-1<a<1,
實(shí)數(shù)a的取值范圍為(-1,1),
(2)當(dāng)a≤-1時(shí),
函數(shù)f(x)在[-1,1]上為增函數(shù),
所以
f(-1)=1+2a+a=-2
f(1)=1-2a+a=2
,
∴a=-1,
當(dāng)a≥1時(shí),
函數(shù)f(x)在[-1,1]上為減函數(shù),
f(-1)=1+2a+a=2
f(1)=1-2a+a=-2
,
此時(shí),無(wú)解,
當(dāng)-1<a<1時(shí),
函數(shù)f(x)在x=a時(shí)取得最小值-2,
此時(shí),f(a)=a2-a-2=0,
∴a=-1或a=2,
不合題意,舍去,
∴a=-1,
點(diǎn)評(píng):本題主要考查函數(shù)的基本性質(zhì)和函數(shù)的值域的求法,屬于中檔題,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|3x-6|-|x-4|<2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=2x.若對(duì)任意的x∈[t,t+2],不等式f(x+t)≥f2(x)恒成立,則實(shí)數(shù)t的取值范圍是( 。
A、(-∞,-2]
B、(0,2]
C、(-∞,-
3
2
]
D、[-
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)Z=(1+i)(2-i)的實(shí)部是m,虛部是n,則m•n的值是( 。
A、3B、-3C、3iD、-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2.點(diǎn)P(a,b)滿(mǎn)足|PF2|=|F1F2|.求橢圓的離心率e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)增減性:f(x)=3x-
6
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}、{bn}滿(mǎn)足:a1=2,an+1=
2
an+1
,bn=
an+2
an-1

(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求使|an-1|<
1
2n
成立的正整數(shù)n的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
2a2
x
-alnx(a∈R).
(1)當(dāng)a≥0時(shí),討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x2-2bx+4-ln2,當(dāng)a=1時(shí),若對(duì)任意的x1,x2∈[1,e],都有f(x1)≥g(x2),求實(shí)數(shù)b的取值范圍.
(3)求證:ln(n+1)<1+
1
2
+
1
3
+…+
1
n
+
n
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=a-
2
2x+1
,其中a為常數(shù);
(1)f(x)為奇函數(shù),試確定a的值;
(2)若不等式f(x)+a>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案