【題目】已知某程序框圖如圖所示,則該程序運(yùn)行后輸出的結(jié)果為(

A.
B.
C.
D.

【答案】A
【解析】解:程序運(yùn)行過程中,各變量的值如下表示:
是否繼續(xù)循環(huán) A n
循環(huán)前 0.2 1
第一圈 0.4 2
第二圈 0.8 3
第三圈 0.6 4
第四圈 0.2 5
第五圈 0.4 6

第4n+1圈 0.4 4n+2
第4n+2圈 0.8 4n+3
第4n+3圈 0.6 4n+4
第4n+4圈 0.2 4n+5

第2007圈 0.6 2008
第2008圈 0.2 2009
第2009圈
所以最后輸出的A值為0.2,即
所以答案是:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)軸正半軸為極軸的極坐標(biāo)系中,曲線

(1)說明是哪一種曲線,并將的方程化為極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程為,其中滿足,若曲線的公共點(diǎn)都在 上,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋中有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是
(Ⅰ)若袋中共有10個球,
(i)求白球的個數(shù);
(ii)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于 . 并指出袋中哪種顏色的球個數(shù)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,圓的方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)當(dāng)時(shí),相交于,兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2x2﹣3x)ex
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若方程(2x﹣3)ex= 有且僅有一個實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2-16x+q+3.

(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;

(2)是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且區(qū)間D的長度為12-t(視區(qū)間[a,b]的長度為b-a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分13分)

某食品廠進(jìn)行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工費(fèi)為元(為常數(shù),且,設(shè)該食品廠每公斤蘑菇的出廠價(jià)為元(),根據(jù)市場調(diào)查,銷售量成反比,當(dāng)每公斤蘑菇的出廠價(jià)為30元時(shí),日銷售量為100公斤.

)求該工廠的每日利潤元與每公斤蘑菇的出廠價(jià)元的函數(shù)關(guān)系式;

)若,當(dāng)每公斤蘑菇的出廠價(jià)為多少元時(shí),該工廠的利潤最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin2x+cos(2x﹣ ).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在(0, )上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C: + =1(a>b>0)的離心率為 ,過左焦點(diǎn)任作直線l,交橢圓的上半部分于點(diǎn)M,當(dāng)l的斜率為 時(shí),|FM|=
(1)求橢圓C的方程;
(2)橢圓C上兩點(diǎn)A,B關(guān)于直線l對稱,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案