【題目】已知拋物線的焦點為,是上一點,且.
(1)求的方程;
(2)設(shè)點是上異于點的一點,直線與直線交于點,過點作軸的垂線交于點,證明:直線過定點.
【答案】(1)的方程為;(2)見解析.
【解析】
(1)由拋物線的定義利用.可求,進而求得的方程;
(2)證明:設(shè),.由題意,可設(shè)直線的方程為,代入,得.由軸及點在直線上,得,
則由,,三點共線,得,
整理,得.結(jié)合韋達定理可得
. 由點的任意性,得,即可證明.
(1)解:根據(jù)題意知,,①
因為,所以.②.
聯(lián)立①②解的,.
所以的方程為.
(2)證明:設(shè),.由題意,可設(shè)直線的方程為,代入,得.
根與系數(shù)的關(guān)系.得,.③
由軸及點在直線上,得,
則由,,三點共線,得,
整理,得.
將③代入上式并整理,得.
由點的任意性,得,所以.
即直線恒過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對任意的正整數(shù) ,都有 ;
④存在最大的正數(shù),使得對任意的正整數(shù),都有.
其中真命題的序號是________________(請寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3x2+1,g(x)=,若方程g[f(x)]-a=0(a>0)有6個實數(shù)根(互不相同),則實數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,摩天輪的半徑為40米,摩天輪的軸O點距離地面的高度為45米,摩天輪勻速逆時針旋轉(zhuǎn),每6分鐘轉(zhuǎn)一圈,摩天輪上點P的起始位置在最高點處,下面的有關(guān)結(jié)論正確的有( )
A.經(jīng)過3分鐘,點P首次到達最低點
B.第4分鐘和第8分鐘點P距離地面一樣高
C.從第7分鐘至第10分鐘摩天輪上的點P距離地面的高度一直在降低
D.摩天輪在旋轉(zhuǎn)一周的過程中有2分鐘距離地面不低于65米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=﹣1,且f﹣1(1)=f﹣1()=5,試求實數(shù)b,c的值;
(2)設(shè)n=2,若對任意x1,x2∈[﹣1,1]有|f2(x1)﹣f2(x2)|≤6恒成立,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com