【題目】已知正項等比數(shù)列滿足,若存在兩項,使得,則的最小值為( )
A. B. C. D.
【答案】B
【解析】
設{an}的公比為q(q>0),由等比數(shù)列的通項公式化簡a7=a6+2a5,求出q,代入aman=16a12化簡得m,n的關系式,由“1”的代換和基本不等式求出式子的范圍,驗證等號成立的條件,由m、n的值求出式子的最小值.
設正項等比數(shù)列{an}的公比為q,且q>0,
由得:q=+,
化簡得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),
因為aman=16a12,所以=16a12,
則qm+n﹣2=16,解得m+n=6,
所以=(m+n)()=(10+)≥=,
當且僅當時取等號,此時,解得,
因為m n取整數(shù),所以均值不等式等號條件取不到,則>,
驗證可得,當m=2、n=4時,取最小值為,
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),且,則方程在區(qū)間上的所有實數(shù)根之和最接近下列哪個數(shù)( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,已知知矩形中,點是邊上的點, 與相交于點,且,現(xiàn)將沿折起,如圖2,點的位置記為,此時.
(1)求證: 面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), 為自然對數(shù)的底數(shù), .
(1)試討論函數(shù)的單調(diào)性;
(2)當時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中歐班列是推進與“一帶一路”沿線國家道路聯(lián)通、貿(mào)易暢通的重要舉措,作為中歐鐵路在東北地區(qū)的始發(fā)站,沈陽某火車站正在不斷建設.目前車站準備在某倉庫外,利用其一側(cè)原有墻體,建造一間墻高為3米,底面為12平方米,且背面靠墻的長方體形狀的保管員室.由于此保管員室的后背靠墻,無需建造費用,因此甲工程隊給出的報價為:屋子前面新建墻體的報價為每平方米400元,左右兩面新建墻體報價為每平方米150元,屋頂和地面以及其他報價共計7200元.設屋子的左右兩側(cè)墻的長度均為米.
(1)當左右兩面墻的長度為多少時,甲工程隊報價最低?
(2)現(xiàn)有乙工程隊也參與此保管員室建造競標,其給出的整體報價為元,若無論左右兩面墻的長度為多少米,乙工程隊都能競標成功,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com