【題目】已知函數(shù), 為自然對數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當(dāng)時, 恒成立,求實數(shù)的取值范圍.

【答案】(1) 當(dāng)時, 上單調(diào)遞增;當(dāng)時, 上單調(diào)遞增,在上單調(diào)遞減.

(2) .

【解析】試題分析:(1)對函數(shù)求導(dǎo),關(guān)注定義域,對參數(shù) a進(jìn)行討論,得出函數(shù)的單調(diào)性;(2)解決恒成立的最基本方法就是分離參數(shù),化為時恒成立.設(shè)右邊為函數(shù)g(x),通過兩次求導(dǎo)研究函數(shù)g(x)的單調(diào)性和最大值,最后利用極值原理得出a的范圍.

試題解析:

(1)的定義域為,

時,則,∴上單調(diào)遞增;

時,則由,∴

當(dāng)時, ,∴上單調(diào)遞增;

當(dāng)時, ,∴上單調(diào)遞減.

綜上所述,當(dāng)時, 上單調(diào)遞增;

當(dāng)時, 上單調(diào)遞增,在上單調(diào)遞減.

(2)由題意得: 時恒成立,

時恒成立.

,( ),

. 

,

時恒成立,

上單調(diào)遞減,

,

∴當(dāng)時, ,∴, 上單調(diào)遞增;

當(dāng)時, ,∴, 上單調(diào)遞減.

處取得最大值,

的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

知圓錐曲線參數(shù)和定點,、此圓錐曲線的左、右焦點,以原點,以的正半軸為極軸建立極坐標(biāo)系.

1直線直角坐標(biāo)方程;

2經(jīng)過點與直線直的直線此圓錐曲線于、兩點,求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則二人“心有靈犀”的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,表示空間中三條不同的直線,表示平面, 給出下列命題:

,, ; ② ,, ;

,, ; ④ , , .

其中真命題的序號是( )

A. ①② B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校舉行了一次安全教育知識競賽,競賽的原始成績采用百分制.已知高三學(xué)生的原始成績均分布在內(nèi)發(fā)布成績使用等級制,各等級劃分標(biāo)準(zhǔn)見表.

原始成績

85分及以上

70分到84

60分到69

60分以下

等級

優(yōu)秀

良好

及格

不及格

為了解該校高三年級學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示,其中等級為不及格的有5人,優(yōu)秀的有3人.

1)求和頻率分布直方圖中的的值;

2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高三學(xué)生中任選3人,求至少有1人成績是及格以上等級的概率;

3)在選取的樣本中,從原始成績在80分以上的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗介紹,記表示抽取的3名學(xué)生中優(yōu)秀等級的學(xué)生人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學(xué)者王子。他對文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽(yù)為“鋼琴理論的鼻祖”!笆骄伞笔侵敢粋八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設(shè)第二個音的頻率為,第八個音的頻率為,則等于

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, 平面,,點上的點,且 .

(1)求證:對任意的 ,都有.

(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,

,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列的前項和為,;數(shù)列中,,且滿足

(1)求的通項;

(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的不等式恰有3個整數(shù)解,則實數(shù)的最小值為( )

A. 1 B. C. D.

查看答案和解析>>

同步練習(xí)冊答案