(本小題滿分15分)已知點P(4,4),圓C與橢圓E:
有一個公共點A(3,1),F1F2分別是橢圓的左.右焦點,直線PF1與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的范圍.
解:(Ⅰ)點A代入圓C方程,           得.  ∵m<3,∴m=1.
C.設直線PF1的斜率為k,
PF1,即
∵直線PF1與圓C相切,∴
解得.當k時,直線PF1x軸的交點橫坐標為,不合題意舍去.
k時,直線PF1x軸的交點橫坐標為-4,
c=4.F1(-4,0),F2(4,0).2aAF1AF2,a2=18,
b2=2.橢圓E的方程為:
(Ⅱ),設Qx,y),,
.∵,即,
,∴-18≤6xy≤18.
的取值范圍是[0,36].
的取值范圍是[-6,6].
的取值范圍是[-12,0].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

、已知橢圓的離心率是,長軸長是為6,
(1)求橢圓的方程;
(2)設直線交于兩點,已知點的坐標為,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓短軸的一個端點,離心率.過作直線與橢圓交于另一點,與軸交于點不同于原點),點關于軸的對稱點為,直線軸于點
(Ⅰ)求橢圓的方程;
(Ⅱ)求 的值.
[]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題滿分16分)
如圖,已知圓是橢圓的內(nèi)接△的內(nèi)切圓, 其中為橢圓的左頂點.

(1)求圓的半徑;
2)過點作圓的兩條切線交橢圓于兩點,


 
判斷直線與圓的位置關系并說明理由.

         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線與橢圓C交于,兩點,點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知方程表示橢圓,則的取值范圍為         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果橢圓上一點到焦點的距離等于6,則點到另一個焦點的距離為____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓經(jīng)過點,離心率為,動點
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求以OM為直徑且被直線截得的弦長為2的圓的方程;
(Ⅲ)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,證明線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

從一塊短軸長為2b的橢圓形玻璃鏡中劃出一塊面積最大的矩形,其面積的取值范圍是[3b2,4b2],則這一橢圓離心率e的取值范圍是 (     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案