11.已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,P(m,-2m)(m≠0)是角α終邊上的一點.則tan(α+$\frac{π}{4}$)的值為(  )
A.3B.$\frac{1}{3}$C.$-\frac{1}{3}$D.-3

分析 由條件利用任意角的三角函數(shù)的定義求得tanα,再利用兩角和的正切公式,特殊角的三角函數(shù)值即可計算得解.

解答 解:根據(jù)P(m,-2m)(m≠0)是角α終邊上的一點,
可得:tanα=$\frac{-2m}{m}$=-2,
可得:tan(α+$\frac{π}{4}$)=$\frac{1+tanα}{1-tanα}$=$\frac{1-2}{1+2}$=-$\frac{1}{3}$.
故選:C.

點評 本題主要考查任意角的三角函數(shù)的定義,特殊角的三角函數(shù)值、兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=$\frac{{a}^{x}}{{a}^{x}+1}$(a>0,a≠1),[m]表示不超過實數(shù)m的最大整數(shù),求函數(shù)[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.定義在實數(shù)R上的函數(shù)y=f(x)是偶函數(shù),當x≥0時,f(x)=-4x2+8x-3.
(Ⅰ)求f(x)在R上的表達式;
(Ⅱ)在給出的坐標系中作出y=f(x)的圖象,并寫出f(x)最大值和f(x)在R上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)(x1,y1),(x2,y2),…,(xn,yn)是變量x和y的n個樣本點,直線l是由這些樣本點通過最小二乘法得到的線性回歸直線(如圖),則下列結(jié)論正確的是( 。
A.x和y成正相關(guān)
B.若直線l方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,則$\widehat$>0
C.最小二乘法是使盡量多的樣本點落在直線上的方法
D.直線l過點$(\overline x,\overline y)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a、b都為集合{-2,0,1,3,4}中的元素,則函數(shù)f(x)=(a2-2)x+b為增函數(shù)的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={1,2,3},B={-2,-1,0,1,2},則A∩B=( 。
A.{1,2,3}B.{-2,-1,0,1,2}C.{1,2}D.{-2,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等差數(shù)列-5,-3$\frac{1}{2}$,-2,-$\frac{1}{2}$,…的相鄰兩項之間插入一個數(shù),使之組成一個新的等差數(shù)列,則數(shù)列的通項公式an=-5+$\frac{3}{4}$(n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2acosB=2c-b.
(1)求角A的大;
(2)若c=2b,求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知矩陣M=$[\begin{array}{l}{1}&\\{c}&{2}\end{array}]$有特征值λ1=4及對應(yīng)的一個特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{2}\\{3}\end{array}]$,則直線2x-y+3=0在矩陣M對應(yīng)的變換作用下的直線方程是7x-5y-12=0.

查看答案和解析>>

同步練習(xí)冊答案