8.長為3的線段兩端點(diǎn)A,B分別在x軸正半軸和y軸的正半軸上滑動,$\overrightarrow{BP}$=2$\overrightarrow{PA}$,點(diǎn)P的軌跡為曲線C.
(Ⅰ)以直線AB的傾斜角α為參數(shù),寫出曲線C的參數(shù)方程;
(Ⅱ)求點(diǎn)P到點(diǎn)D(0,-1)距離d的取值范圍.

分析 (Ⅰ)設(shè)P(x,y),則根據(jù)題設(shè)畫圖,可知:x=$\frac{2}{3}$|AB|cos(π-α),y=$\frac{1}{3}|AB|sin(π-α)$,化簡整理即可得出參數(shù)方程;
(Ⅱ)設(shè)P(-2cosα,sinα),可得|PD|=$\sqrt{(-2cosα)^{2}+(sinα+1)^{2}}$=$\sqrt{-3(sinα-\frac{1}{3})^{2}+\frac{16}{3}}$,利用二次函數(shù)與三角函數(shù)的單調(diào)性即可得出.

解答 解:(Ⅰ)設(shè)P(x,y),則根據(jù)題設(shè)畫圖,
可知:x=$\frac{2}{3}$|AB|cos(π-α)=-2cosα,y=$\frac{1}{3}|AB|sin(π-α)$=sinα,
曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=-2cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù),且$\frac{π}{2}<α<π$);
(Ⅱ)設(shè)P(-2cosα,sinα),則
|PD|=$\sqrt{(-2cosα)^{2}+(sinα+1)^{2}}$
=$\sqrt{-3si{n}^{2}α+2sinα+5}$
=$\sqrt{-3(sinα-\frac{1}{3})^{2}+\frac{16}{3}}$,
∵$\frac{π}{2}<α<π$,∴sinα∈(0,1),
∴$2<|PD|≤\frac{4\sqrt{3}}{3}$,
故d的取值范圍是$(2,\frac{4\sqrt{3}}{3}]$.

點(diǎn)評 本題考查了直線的參數(shù)方程、兩點(diǎn)之間的距離公式、二次函數(shù)與三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題p:對任意x∈R,總有3x>0;命題q:“x>2”是“x>4”的充分不必要條件,則下列命題為真命題的是(  )
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為豐富市民的文化生活,市政府計(jì)劃在一塊半徑為200m,圓心角為120°的扇形地上建造市民廣場.規(guī)劃設(shè)計(jì)如圖:內(nèi)接梯形ABCD區(qū)域?yàn)檫\(yùn)動休閑區(qū),其中A,B分別在半徑OP,OQ上,C,D在圓弧$\widehat{PQ}$上,CD∥AB;△OAB區(qū)域?yàn)槲幕故緟^(qū),AB長為$50\sqrt{3}$m;其余空地為綠化區(qū)域,且CD長不得超過200m.
(1)試確定A,B的位置,使△OAB的周長最大?
(2)當(dāng)△OAB的周長最大時(shí),設(shè)∠DOC=2θ,試將運(yùn)動休閑
區(qū)ABCD的面積S表示為θ的函數(shù),并求出S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC中點(diǎn),又PA=AB=4,∠CDA=120°,點(diǎn)N在線段PB上,且PN=$\sqrt{2}$.
(Ⅰ)求證:BD⊥PC;
(Ⅱ)求證:MN∥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角是$\frac{π}{3}$,若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則|2$\overrightarrow{a}$-$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)l,m是兩條異面直線,P是空間任意一點(diǎn),則下列命題正確的是( 。
A.過P點(diǎn)必存在平面與兩異面直線l,m都垂直
B.過P點(diǎn)必存在平面與兩異面直線l,m都平行
C.過P點(diǎn)必存在直線與兩異面直線l,m都垂直
D.過P點(diǎn)必存在直線與兩異面直線l,m都平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2$\sqrt{3}$cosxsinx+2cos2x
(1)求$f(\frac{π}{6})$;
(2)求f(x)的最小正周期;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,則|$\overrightarrow{a}$-$\overrightarrow$|的值為( 。
A.3B.$\sqrt{3}$C.$\sqrt{7}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某學(xué)校為調(diào)查高中三年級男生的身高情況,選取了500名男生作為樣本,如圖是此次調(diào)查統(tǒng)計(jì)的流程圖,若輸出的結(jié)果是380,則身高在170cm以下的頻率為0.24.

查看答案和解析>>

同步練習(xí)冊答案